With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 ...With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 and spread quickly across the country.It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.Atypical porcine pestivirus(APPV) was first detected in Guangdong Province,China,in 2016,which mainly harms piglets and has a local epidemic situation in southern China.These three diseases have similar clinical symptoms in pig herds,which cause considerable losses to the pig industry.They are difficult to be distinguished only by clinical diagnosis.Therefore,developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.In this study,three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV(5’ UTR),African swine fever virus(ASFV)(B646L),and APPV(5’ UTR),followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.The results showed that the method did not cross-react with other swine pathogens(porcine circovirus type 2(PCV2),porcine reproductive and respiratory syndrome virus(PRRSV),foot-and-mouth disease virus(FMDV),pseudorabies virus(PRV),porcine parvovirus(PPV),and bovine viral diarrhea virus BVDV).The sensitivity results showed that CSFV,ASFV,and APPV could be detected as low as 1 copy μL–1;the repeatability results showed that the intra-assay and interassay coefficient of variation of ASFV,CSFV,and APPV was less than 1%.Twenty-two virus samples were detected by the multiplex real-time PCR,compared with national standard diagnostic and patented method assay for CSF(GB/T 27540–2011),ASF(GB/T 18648–2020),and APPV(CN108611442A),respectively.The sensitivity of this triple real-time PCR for CSFV,ASFV,and APPV was almost the same,and the compliance results were the same(100%).A total of 451 clinical samples were detected,and the results showed that the positive rates of CSFV,ASFV,and APPV were 0.22% (1/451),1.3%(6/451),and 0%(0/451),respectively.This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV,ASFV,and APPV.展开更多
A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Speci...A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Specific primers for each of the 3 RNA viruses,North American genotype porcine reproductive and respiratory syndrome virus,Japanese encephalitis virus,and swine influenza virus,were used in the testing procedure.The assay was shown to be highly sensitive because it could detect as little as 10-5 ng of each of the respective amplicons in a single sample containing a composite of all 3 viruses.The assay was also effective in detecting one or more of the same viruses in various combinations in specimens,including lymph nodes,lungs,spleens,and tonsils,collected from clinically ill pigs and in spleen specimens collected from aborted pig fetuses.The results from the multiplex RT-PCR were confirmed by virus isolation.The relative efficiency(compared to the efficiency of separate assays for each virus) and apparent sensitivity of the multiplex RT-PCR method show that this method has potential for application in routine molecular diagnostic procedures.展开更多
Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of...Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of the PH promoter. Recombinant plL-2 (rpIL-2) expressed in Sf9 insect cells was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunofluorescence assay. Western blot analysis confirmed that the rpIL-2 protein had a molecular mass of 20 kDa, which was larger than the molecular mass of the mature protein predicted based on its peptide sequence. The rpIL-2 protein induced in vitro proliferation of ConA-stimulated porcine splenocytes and enhanced in vivo protective immune responses induced by vaccinating the pigs with inactivated oil emulsion vaccine against swine influenza virus. The results showed that the rpIL-2 expressed in Sf9 insect cells has immunoenhancement effects; the finding lays the foundation for the preparation of a specific recombinant IL-2 protein and the development of a novel immune adjuvant of vaccines against various infectious porcine pathogens to increase the immunoprotective efficacy of vaccines.展开更多
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in...Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.展开更多
One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus ...One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like H1N1, NS from classical swine H1N1, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine.展开更多
Swine influenza A virus(swine IAV) circulates worldwide in pigs and poses a serious public health threat, as evidenced by the 2009 H1N1 influenza pandemic. Among multiple subtypes/lineages of swine influenza A virus...Swine influenza A virus(swine IAV) circulates worldwide in pigs and poses a serious public health threat, as evidenced by the 2009 H1N1 influenza pandemic. Among multiple subtypes/lineages of swine influenza A viruses, European avian-like(EA) H1N1 swine IAV has been dominant since 2005 in China and caused infections in humans in 2010. Highly sensitive and specific methods of detection are required to differentiate EA H1N1 swine IAVs from viruses belonging to other lineages and subtypes. In this study, a nested reverse transcription(RT)-PCR assay was developed to detect EA H1 swine IAVs. Two primer sets(outer and inner) were designed specifically to target the viral hemagglutinin genes. Specific PCR products were obtained from all tested EA H1N1 swine IAV isolates, but not from other lineages of H1 swine IAVs, other subtypes of swine IAVs, or other infectious swine viruses. The sensitivity of the nested RT-PCR was improved to 1 plaque forming unit(PFU) m L^(-1) which was over 10~4 PFU m L^(-1) for a previously established multiplex RT-PCR method. The nested RT-PCR results obtained from screening 365 clinical samples were consistent with those obtained using conventional virus isolation methods combined with sequencing. Thus, the nested RT-PCR assay reported herein is more sensitive and suitable for the diagnosis of clinical infections and surveillance of EA H1 swine IAVs in pigs and humans.展开更多
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia.Due to their hostrange diversity,genetic and antigenic diversity,and potential to...Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia.Due to their hostrange diversity,genetic and antigenic diversity,and potential to reassort genetically in vivo,influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans.Thus,newly emerging viral diseases are always major threats to public health.In March 2009,a novel influenza virus suddenly emerged and caused a worldwide pandemic.The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses;it was identified to have originated from pigs,and further genetic analysis revealed it as a subtype of A/H1N1,thus later called a swine-origin influenza virus A/H1N1.Since the novel virus emerged,epidemiological surveys and research on experimental animal models have been conducted,and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated.In this editorial,we summa-rize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.展开更多
The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction wit...The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction with IPTG.The expressed HA protein was identified by SDS-PAGE and Western blotting which showed the protein to be 42kDa and was immunoreactive.The purified HA protein was used to establish the indirect ELIS A for detection of the antibodies,specifically against the H3 subtype of SIV.The assay has excellent specificity,sensitivity and reproducibility.When 96 serum samples,randomly collected from the field,were evaluated in parallel by this new ELISA using recombinant HA1 and a routine HI test,the coincidental rate between the two tests was 86.5%.These results show that the recombinant HAl-based ELISA is specific,sensitive and easy to perform for the serological diagnosis of SIV infection.展开更多
To construct a recombinant adenovirus shuttle plasmid pDC315-H5HA-EGFP,the HA gene of A/Swine/Fujian/1/2001(H5N1) was amplified by RT-PCR and then inserted into adenovirus shuttle plasmid pDC315.A replication-defectiv...To construct a recombinant adenovirus shuttle plasmid pDC315-H5HA-EGFP,the HA gene of A/Swine/Fujian/1/2001(H5N1) was amplified by RT-PCR and then inserted into adenovirus shuttle plasmid pDC315.A replication-defective recombinant adenovirus expressing the HA gene(rAd-H5HA-EGFP) was generated by co-transfecting the recombinant shuttle plasmid pDC315-H5HA-EGFP and the genomic plasmid pBHGlox△E1,E3Cre in HEK293 cells.The recombinant adenovirus was confirmed by PCR,RT-PCR and Western blot assay.These results demonstrated that HA protein was properly expressed by the rAd-H5HA-EGFP in HEK293 cells and had natural biological activities.The TCID<sub>50</sub> of the rAd-H5HA- EGFP was assessed to be 2.26×10<sup>10</sup>/mL after propagation and purification.Immunization of BALB/ c mice indicated that rAd-H5HA-EGFP induced HI antibodies and protected mice from replication of the challenge virus in their lungs.展开更多
To obtain the NS1 gene of swine influenza virus H9N2 subtype expressed efficiently in E. coli, to develope the effective diagnostic methods for swine influenza virus H9N2 subtype, the NS 1 gene of swine influenza viru...To obtain the NS1 gene of swine influenza virus H9N2 subtype expressed efficiently in E. coli, to develope the effective diagnostic methods for swine influenza virus H9N2 subtype, the NS 1 gene of swine influenza virus H9N2 subtype was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) and cloned into a prokaryotic expression vector, pET-28a(+), and overexpressed in E. coli BL21-DE3 after induction with 5 mmol L-1 lactose. The recombinant protein was purified by Ni-NTA and identified by western-blotting. An indirect enzyme-linked immunosorbent assay (ELISA) was used to analyze the antigenicity of the recombinant protein. The recombinant protein of NS1 was about 26 kD. The Western-blotting test showed that the recombinant protein reacted specifically with positive sera. The results of the ELISA test showed that the recombinant protein had good antigenicity.展开更多
Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain o...Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.展开更多
Background:The ongoing African swine fever virus(ASFv)epidemic has had a major impact on pig production globally and biosecurity efforts to curb ASFv infectivity and transmission are a high priority.It has been recent...Background:The ongoing African swine fever virus(ASFv)epidemic has had a major impact on pig production globally and biosecurity efforts to curb ASFv infectivity and transmission are a high priority.It has been recently identified that feed and feed ingredients,along with drinking water,can serve as transmission vehicles and might facilitate transboundary spread of ASFv.Thus,it is important to test the antiviral activity of regulatory compatible,antiviral feed additives that might inhibit ASFv infectivity in feed.One promising group of feed additive candidates includes medium-chain fatty acids(MCFA)and monoglyceride derivatives,which are known to disrupt the lipid membrane surrounding certain enveloped viruses and bacteria.Results:The antiviral activities of selected MCFA,namely caprylic,capric,and lauric acids,and a related monoglyceride,glycerol monolaurate(GML),to inhibit ASFv in liquid and feed conditions were investigated and suitable compounds and inclusion rates were identified that might be useful for mitigating ASFv in feed environments.Antiviral assays showed that all tested MCFA and GML inhibit ASFv.GML was more potent than MCFA because it worked at a lower concentration and inhibited ASFv due to direct virucidal activity along with one or more other antiviral mechanisms.Dose-dependent feed experiments further showed that sufficiently high GML doses can significantly reduce ASFv infectivity in feed in a linear manner in periods as short as 30 min,as determined by infectious viral titer measurements.Enzyme-linked immunosorbent assay(ELISA)experiments revealed that GML treatment also hinders antibody recognition of the membrane-associated ASFv p72 structural protein,which likely relates to protein conformational changes arising from viral membrane disruption.Conclusion:Together,the findings in this study indicate that MCFA and GML inhibit ASFv in liquid conditions and that GML is also able to reduce ASFv infectivity in feed,which may help to curb disease transmission.展开更多
A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the ...A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the genomic RNA of CSFV under isothermal conditions(63℃)within one hour,using a set of six primers(two outer primers,two inner primers and two loop primers).This RT-LAMP assay showed 100-fold higher sensitivity than the standard RT-PCR method and identified eighteen additional positive cases that were negative when tested by RT-PCR.This RT-LAMP was able to detect all the 13 strains of CSFV but not the BVDV.PRRSV.SIV. PRV-PCV,thus showed a good specificity.Products amplified by RT-LAMP can be visualized by agarose gel electrophoresis and in addition,either as a white precipitate at the bottom of the tube after a pulse spin or as a color change when dyed with SYBR Green I which are visible to the naked eye.Because RT-LAMP is low-cost and produces rapid results,it has the potential to be an excellent tool for CSFV surveillance in the field,especially in developing countries.展开更多
Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared...Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.展开更多
African swine fever(ASF) is an acute and highly contagious disease that causes severe economic losses to the swine industry. ASF is caused by infection of African swine fever virus(ASFV) in domestic pigs, leading to a...African swine fever(ASF) is an acute and highly contagious disease that causes severe economic losses to the swine industry. ASF is caused by infection of African swine fever virus(ASFV) in domestic pigs, leading to almost 100% mortality. However, no effective vaccines and pharmacologic treatment against ASF are available. ASF poses a severe threat to the swine industry and the economy. Here we summarize potential virus-host cell interaction mechanisms involving the suppression of innate and adaptive immune responses to ASFV entry and infection. These mechanisms include modulation of apoptosis, inhibition of inflammatory responses, reduction of IFN production, inhibition of autophagy, and suppression of MHC-I expression. Insights into immunoevasion strategies by ASFV may shed light on the development of vaccines, as well as preventive and therapeutic drugs.展开更多
Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution...Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution of CSFV in different organ samples showed some discrepancies in infected pigs. Four weaner pigs were inoculated with C-strain vaccine virus, then samples of spleen, tonsil, lung, mesenteric lymph node, kidney and brain were collected after slaughter and tested for E2 and NS5B genes using one-step RT-PCR and nested RT-PCR. Using the same method, 12 field cases were simultaneously studied. A discrepancy of CSFV in different samples was found upon detecting the target gene. The most reliable diagnostic organs were spleen and tonsil, and the nested RT-PCR assay provided a highly sensitive and specific method with comparable performance to the one-step RT-PCR assay.展开更多
In this study,a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV)E2 glycoprotein was expressed in E.coli to a obtain target protein.This target protein was used as a coating...In this study,a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV)E2 glycoprotein was expressed in E.coli to a obtain target protein.This target protein was used as a coating antigen to establish an indirect ELISA for specifically detecting anti-CSFV antibodies in serum samples from pigs.The P/N cut-off value of this assay was 1.92 by receiver operating characteristic curve(ROC)analysis based on 30 negative sera and 80 positive samples.The test gave 97.5%sensitivity and 96.7%specificity compared with the indirect hemagglutination(IHA)test.The inter-assay and intra-assay coefficients of variation (CVs)for 16 sera were both≤6.8%.No cross-reactivity between the coating antigen and anti-bovine viral diarrhoea virus(BVDV)antibodies was observed.展开更多
The reverse genetics for classical swine fever virus (CSFV) is currently based on the transfection of in vitro transcribed RNA from a viral genomic cDNA clone, which is inefficient and time-consuming. This study was...The reverse genetics for classical swine fever virus (CSFV) is currently based on the transfection of in vitro transcribed RNA from a viral genomic cDNA clone, which is inefficient and time-consuming. This study was aimed to develop an improved method for rapid recovery of CSFV directly from cloned cDNA. Full-length genomic cDNA from the CSFV Shimen strain, which was flanked by a T7 promoter, the hepatitis delta virus ribozyme and T7 terminator sequences, was cloned into the low- copy vector pOK12, producing pOKShimen-RzTФ. Direct transfection of pOKShimen-RzTqb into PK/T7 cells, a PK-15- derived cell line stably expressing bacteriophage T7 RNA polymerase, allowed CSFV to be rescued rapidly and efficiently, i.e., at least 12 h faster and 31.6-fold greater viral titer when compared with the in vitro transcription-based rescue system. Furthermore, the progeny virus rescued from PK/T7 cells was indistinguishable, both in vitro and in vivo, from its parent virus and the virus rescued from classical reverse genetics. The reverse genetics based on intracellular transcription is efficient, convenient and cost-effective. The PK/T7 cell line can be used to rescue CSFV directly from cloned cDNA and it can also be used as an intracellular transcription and expression system for studying the structure and function of viral genes.展开更多
Classical swine fever (CSF) and porcine reproduction and respiratory syndrome (PRRS) are both economically important, highly contagious diseases of swine worldwide. To develop an effective vaccine to control these...Classical swine fever (CSF) and porcine reproduction and respiratory syndrome (PRRS) are both economically important, highly contagious diseases of swine worldwide. To develop an effective vaccine to control these two diseases, we constructed a recombinant adenovirus rAdV-GP52AE2, using a replication-defective human adenovirus serotype 5 as a delivery vector, to co-express the GP5 protein of highly pathogenic porcine reproduction and respiratory syndrome virus (PRRSV) and the E2 protein of classical swine fever virus (CSFV). Foot-and-mouth disease virus (FMDV) 2A peptide was used as a linker between the GP5 and E2 proteins to allow automatic self-cleavage of the polyprotein. The GP5 and E2 genes were expressed as demonstrated by immunofluorescence assay and Western blotting. Immunization of mice resulted in a CSFV-neutralizing antibody titer of 1:128 and a PRRSV-neutralizing antibody titer of 1:16. The lymphoproliferative responses were detected by Cell Counting Kit-8 assay and the stimulation index of CFSV-specific and PRRSV-specific lymphocytes in the rAdV-GP52AE2 group was significantly higher than that in the negative control group. The results show that rAdV-GP52AE2 can induce both effective humoral and cell-mediated immune responses in mice. The protective efficacy of the recombinant virus against CSF was evaluated in immunized rabbits, which were protected from fever induced by challenge with C-strain. Our study provides supporting evidence for the use of FMDV 2A to develop a bivalent genetically-engineered vaccine.展开更多
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability...VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.展开更多
基金supported by the National Natural Science Foundation of China (31872484) to Zhang Qianyithe Non-profit Key Program of Veterinary Drug Industry from China Institute of Veterinary Drug Control (GY202011) to Xia Yingju。
文摘With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 and spread quickly across the country.It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.Atypical porcine pestivirus(APPV) was first detected in Guangdong Province,China,in 2016,which mainly harms piglets and has a local epidemic situation in southern China.These three diseases have similar clinical symptoms in pig herds,which cause considerable losses to the pig industry.They are difficult to be distinguished only by clinical diagnosis.Therefore,developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.In this study,three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV(5’ UTR),African swine fever virus(ASFV)(B646L),and APPV(5’ UTR),followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.The results showed that the method did not cross-react with other swine pathogens(porcine circovirus type 2(PCV2),porcine reproductive and respiratory syndrome virus(PRRSV),foot-and-mouth disease virus(FMDV),pseudorabies virus(PRV),porcine parvovirus(PPV),and bovine viral diarrhea virus BVDV).The sensitivity results showed that CSFV,ASFV,and APPV could be detected as low as 1 copy μL–1;the repeatability results showed that the intra-assay and interassay coefficient of variation of ASFV,CSFV,and APPV was less than 1%.Twenty-two virus samples were detected by the multiplex real-time PCR,compared with national standard diagnostic and patented method assay for CSF(GB/T 27540–2011),ASF(GB/T 18648–2020),and APPV(CN108611442A),respectively.The sensitivity of this triple real-time PCR for CSFV,ASFV,and APPV was almost the same,and the compliance results were the same(100%).A total of 451 clinical samples were detected,and the results showed that the positive rates of CSFV,ASFV,and APPV were 0.22% (1/451),1.3%(6/451),and 0%(0/451),respectively.This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV,ASFV,and APPV.
基金supported by a grant from the Out-standing Person Innovation Foundation of Henan,China(0621002100)
文摘A multiplex reverse transcriptase-polymerase chain reaction(multiplex RT-PCR) assay was developed and subsequently evaluated for its efficacy in the detection of multiple viral infections simultaneously,in swine.Specific primers for each of the 3 RNA viruses,North American genotype porcine reproductive and respiratory syndrome virus,Japanese encephalitis virus,and swine influenza virus,were used in the testing procedure.The assay was shown to be highly sensitive because it could detect as little as 10-5 ng of each of the respective amplicons in a single sample containing a composite of all 3 viruses.The assay was also effective in detecting one or more of the same viruses in various combinations in specimens,including lymph nodes,lungs,spleens,and tonsils,collected from clinically ill pigs and in spleen specimens collected from aborted pig fetuses.The results from the multiplex RT-PCR were confirmed by virus isolation.The relative efficiency(compared to the efficiency of separate assays for each virus) and apparent sensitivity of the multiplex RT-PCR method show that this method has potential for application in routine molecular diagnostic procedures.
基金supported by a grant from the the Key Technology R&D Program of China (2008BADB2B01)
文摘Mature porcine interleukin-2 (pIL-2) gene was amplified by PCR from the plasmid pGEM-T-pIL2 and cloned into the baculovirus pFastBacTM Dual vector of the Bac-to-Bac baculovirus expression system under the control of the PH promoter. Recombinant plL-2 (rpIL-2) expressed in Sf9 insect cells was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunofluorescence assay. Western blot analysis confirmed that the rpIL-2 protein had a molecular mass of 20 kDa, which was larger than the molecular mass of the mature protein predicted based on its peptide sequence. The rpIL-2 protein induced in vitro proliferation of ConA-stimulated porcine splenocytes and enhanced in vivo protective immune responses induced by vaccinating the pigs with inactivated oil emulsion vaccine against swine influenza virus. The results showed that the rpIL-2 expressed in Sf9 insect cells has immunoenhancement effects; the finding lays the foundation for the preparation of a specific recombinant IL-2 protein and the development of a novel immune adjuvant of vaccines against various infectious porcine pathogens to increase the immunoprotective efficacy of vaccines.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2009434)the Innovation Platform for Public Health Emergency Preparedness and Response(NO.ZX201109)the Key Medical Talent Foundation of Jiangsu Province(RC2011084)
文摘Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.
文摘One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like H1N1, NS from classical swine H1N1, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine.
基金supported by the National High-Tech R&D Program of China (2012AA101303)
文摘Swine influenza A virus(swine IAV) circulates worldwide in pigs and poses a serious public health threat, as evidenced by the 2009 H1N1 influenza pandemic. Among multiple subtypes/lineages of swine influenza A viruses, European avian-like(EA) H1N1 swine IAV has been dominant since 2005 in China and caused infections in humans in 2010. Highly sensitive and specific methods of detection are required to differentiate EA H1N1 swine IAVs from viruses belonging to other lineages and subtypes. In this study, a nested reverse transcription(RT)-PCR assay was developed to detect EA H1 swine IAVs. Two primer sets(outer and inner) were designed specifically to target the viral hemagglutinin genes. Specific PCR products were obtained from all tested EA H1N1 swine IAV isolates, but not from other lineages of H1 swine IAVs, other subtypes of swine IAVs, or other infectious swine viruses. The sensitivity of the nested RT-PCR was improved to 1 plaque forming unit(PFU) m L^(-1) which was over 10~4 PFU m L^(-1) for a previously established multiplex RT-PCR method. The nested RT-PCR results obtained from screening 365 clinical samples were consistent with those obtained using conventional virus isolation methods combined with sequencing. Thus, the nested RT-PCR assay reported herein is more sensitive and suitable for the diagnosis of clinical infections and surveillance of EA H1 swine IAVs in pigs and humans.
文摘Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia.Due to their hostrange diversity,genetic and antigenic diversity,and potential to reassort genetically in vivo,influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans.Thus,newly emerging viral diseases are always major threats to public health.In March 2009,a novel influenza virus suddenly emerged and caused a worldwide pandemic.The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses;it was identified to have originated from pigs,and further genetic analysis revealed it as a subtype of A/H1N1,thus later called a swine-origin influenza virus A/H1N1.Since the novel virus emerged,epidemiological surveys and research on experimental animal models have been conducted,and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated.In this editorial,we summa-rize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.
基金supported by the Chinese National S&T Plan(2004BA519A55)
文摘The HA1 gene of H3N2 subtype swine influenza virus(SIV)was cloned into the expression plasmid pET-30a,the recombinant plasmid was named pET-HAl.This was transformed into E.coli BL21(DE3),and expressed by induction with IPTG.The expressed HA protein was identified by SDS-PAGE and Western blotting which showed the protein to be 42kDa and was immunoreactive.The purified HA protein was used to establish the indirect ELIS A for detection of the antibodies,specifically against the H3 subtype of SIV.The assay has excellent specificity,sensitivity and reproducibility.When 96 serum samples,randomly collected from the field,were evaluated in parallel by this new ELISA using recombinant HA1 and a routine HI test,the coincidental rate between the two tests was 86.5%.These results show that the recombinant HAl-based ELISA is specific,sensitive and easy to perform for the serological diagnosis of SIV infection.
基金supported by the Chinese National S&T Plan(2004BA519A55)Scientific Research Program of State Key Laboratory of Veterinary Biotechnology(NKLVBP200818)
文摘To construct a recombinant adenovirus shuttle plasmid pDC315-H5HA-EGFP,the HA gene of A/Swine/Fujian/1/2001(H5N1) was amplified by RT-PCR and then inserted into adenovirus shuttle plasmid pDC315.A replication-defective recombinant adenovirus expressing the HA gene(rAd-H5HA-EGFP) was generated by co-transfecting the recombinant shuttle plasmid pDC315-H5HA-EGFP and the genomic plasmid pBHGlox△E1,E3Cre in HEK293 cells.The recombinant adenovirus was confirmed by PCR,RT-PCR and Western blot assay.These results demonstrated that HA protein was properly expressed by the rAd-H5HA-EGFP in HEK293 cells and had natural biological activities.The TCID<sub>50</sub> of the rAd-H5HA- EGFP was assessed to be 2.26×10<sup>10</sup>/mL after propagation and purification.Immunization of BALB/ c mice indicated that rAd-H5HA-EGFP induced HI antibodies and protected mice from replication of the challenge virus in their lungs.
文摘To obtain the NS1 gene of swine influenza virus H9N2 subtype expressed efficiently in E. coli, to develope the effective diagnostic methods for swine influenza virus H9N2 subtype, the NS 1 gene of swine influenza virus H9N2 subtype was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) and cloned into a prokaryotic expression vector, pET-28a(+), and overexpressed in E. coli BL21-DE3 after induction with 5 mmol L-1 lactose. The recombinant protein was purified by Ni-NTA and identified by western-blotting. An indirect enzyme-linked immunosorbent assay (ELISA) was used to analyze the antigenicity of the recombinant protein. The recombinant protein of NS1 was about 26 kD. The Western-blotting test showed that the recombinant protein reacted specifically with positive sera. The results of the ELISA test showed that the recombinant protein had good antigenicity.
文摘Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.
基金Natural Biologics Inc.provided funding to conduct the experiments in this study.J.A.J.acknowledges additional funding support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1004385).
文摘Background:The ongoing African swine fever virus(ASFv)epidemic has had a major impact on pig production globally and biosecurity efforts to curb ASFv infectivity and transmission are a high priority.It has been recently identified that feed and feed ingredients,along with drinking water,can serve as transmission vehicles and might facilitate transboundary spread of ASFv.Thus,it is important to test the antiviral activity of regulatory compatible,antiviral feed additives that might inhibit ASFv infectivity in feed.One promising group of feed additive candidates includes medium-chain fatty acids(MCFA)and monoglyceride derivatives,which are known to disrupt the lipid membrane surrounding certain enveloped viruses and bacteria.Results:The antiviral activities of selected MCFA,namely caprylic,capric,and lauric acids,and a related monoglyceride,glycerol monolaurate(GML),to inhibit ASFv in liquid and feed conditions were investigated and suitable compounds and inclusion rates were identified that might be useful for mitigating ASFv in feed environments.Antiviral assays showed that all tested MCFA and GML inhibit ASFv.GML was more potent than MCFA because it worked at a lower concentration and inhibited ASFv due to direct virucidal activity along with one or more other antiviral mechanisms.Dose-dependent feed experiments further showed that sufficiently high GML doses can significantly reduce ASFv infectivity in feed in a linear manner in periods as short as 30 min,as determined by infectious viral titer measurements.Enzyme-linked immunosorbent assay(ELISA)experiments revealed that GML treatment also hinders antibody recognition of the membrane-associated ASFv p72 structural protein,which likely relates to protein conformational changes arising from viral membrane disruption.Conclusion:Together,the findings in this study indicate that MCFA and GML inhibit ASFv in liquid conditions and that GML is also able to reduce ASFv infectivity in feed,which may help to curb disease transmission.
基金The National Science and Technology supporting plan of the Eleventh Five-year(2006BAD06A18 and 2006BAD06A03)Beijing Natural Science Foundation(5072041)
文摘A simple and rapid assay for the detection of Classical swine fever virus(CSFV)was established using reverse transcription loop-mediated isothermal amplification(RT-LAMP).This study describes the amplification of the genomic RNA of CSFV under isothermal conditions(63℃)within one hour,using a set of six primers(two outer primers,two inner primers and two loop primers).This RT-LAMP assay showed 100-fold higher sensitivity than the standard RT-PCR method and identified eighteen additional positive cases that were negative when tested by RT-PCR.This RT-LAMP was able to detect all the 13 strains of CSFV but not the BVDV.PRRSV.SIV. PRV-PCV,thus showed a good specificity.Products amplified by RT-LAMP can be visualized by agarose gel electrophoresis and in addition,either as a white precipitate at the bottom of the tube after a pulse spin or as a color change when dyed with SYBR Green I which are visible to the naked eye.Because RT-LAMP is low-cost and produces rapid results,it has the potential to be an excellent tool for CSFV surveillance in the field,especially in developing countries.
基金Supported by National Basic Research Developmental Project ( G19990 1190 0 ) . Gen Bank NO.:AF40 7339
文摘Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.
基金supported by the National Key Research and Development Program of China (2018YFC0840404 and 2017YFD0502302)
文摘African swine fever(ASF) is an acute and highly contagious disease that causes severe economic losses to the swine industry. ASF is caused by infection of African swine fever virus(ASFV) in domestic pigs, leading to almost 100% mortality. However, no effective vaccines and pharmacologic treatment against ASF are available. ASF poses a severe threat to the swine industry and the economy. Here we summarize potential virus-host cell interaction mechanisms involving the suppression of innate and adaptive immune responses to ASFV entry and infection. These mechanisms include modulation of apoptosis, inhibition of inflammatory responses, reduction of IFN production, inhibition of autophagy, and suppression of MHC-I expression. Insights into immunoevasion strategies by ASFV may shed light on the development of vaccines, as well as preventive and therapeutic drugs.
基金supported by the grants from the National"863" Programme (2006AA10A2041)Development Programme of Science and Technology,Chengguan District of Gansu province (08-5-4)
文摘Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution of CSFV in different organ samples showed some discrepancies in infected pigs. Four weaner pigs were inoculated with C-strain vaccine virus, then samples of spleen, tonsil, lung, mesenteric lymph node, kidney and brain were collected after slaughter and tested for E2 and NS5B genes using one-step RT-PCR and nested RT-PCR. Using the same method, 12 field cases were simultaneously studied. A discrepancy of CSFV in different samples was found upon detecting the target gene. The most reliable diagnostic organs were spleen and tonsil, and the nested RT-PCR assay provided a highly sensitive and specific method with comparable performance to the one-step RT-PCR assay.
文摘In this study,a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV)E2 glycoprotein was expressed in E.coli to a obtain target protein.This target protein was used as a coating antigen to establish an indirect ELISA for specifically detecting anti-CSFV antibodies in serum samples from pigs.The P/N cut-off value of this assay was 1.92 by receiver operating characteristic curve(ROC)analysis based on 30 negative sera and 80 positive samples.The test gave 97.5%sensitivity and 96.7%specificity compared with the indirect hemagglutination(IHA)test.The inter-assay and intra-assay coefficients of variation (CVs)for 16 sera were both≤6.8%.No cross-reactivity between the coating antigen and anti-bovine viral diarrhoea virus(BVDV)antibodies was observed.
基金supported by the National Basic Research Program of China (2005CB523202)
文摘The reverse genetics for classical swine fever virus (CSFV) is currently based on the transfection of in vitro transcribed RNA from a viral genomic cDNA clone, which is inefficient and time-consuming. This study was aimed to develop an improved method for rapid recovery of CSFV directly from cloned cDNA. Full-length genomic cDNA from the CSFV Shimen strain, which was flanked by a T7 promoter, the hepatitis delta virus ribozyme and T7 terminator sequences, was cloned into the low- copy vector pOK12, producing pOKShimen-RzTФ. Direct transfection of pOKShimen-RzTqb into PK/T7 cells, a PK-15- derived cell line stably expressing bacteriophage T7 RNA polymerase, allowed CSFV to be rescued rapidly and efficiently, i.e., at least 12 h faster and 31.6-fold greater viral titer when compared with the in vitro transcription-based rescue system. Furthermore, the progeny virus rescued from PK/T7 cells was indistinguishable, both in vitro and in vivo, from its parent virus and the virus rescued from classical reverse genetics. The reverse genetics based on intracellular transcription is efficient, convenient and cost-effective. The PK/T7 cell line can be used to rescue CSFV directly from cloned cDNA and it can also be used as an intracellular transcription and expression system for studying the structure and function of viral genes.
文摘Classical swine fever (CSF) and porcine reproduction and respiratory syndrome (PRRS) are both economically important, highly contagious diseases of swine worldwide. To develop an effective vaccine to control these two diseases, we constructed a recombinant adenovirus rAdV-GP52AE2, using a replication-defective human adenovirus serotype 5 as a delivery vector, to co-express the GP5 protein of highly pathogenic porcine reproduction and respiratory syndrome virus (PRRSV) and the E2 protein of classical swine fever virus (CSFV). Foot-and-mouth disease virus (FMDV) 2A peptide was used as a linker between the GP5 and E2 proteins to allow automatic self-cleavage of the polyprotein. The GP5 and E2 genes were expressed as demonstrated by immunofluorescence assay and Western blotting. Immunization of mice resulted in a CSFV-neutralizing antibody titer of 1:128 and a PRRSV-neutralizing antibody titer of 1:16. The lymphoproliferative responses were detected by Cell Counting Kit-8 assay and the stimulation index of CFSV-specific and PRRSV-specific lymphocytes in the rAdV-GP52AE2 group was significantly higher than that in the negative control group. The results show that rAdV-GP52AE2 can induce both effective humoral and cell-mediated immune responses in mice. The protective efficacy of the recombinant virus against CSF was evaluated in immunized rabbits, which were protected from fever induced by challenge with C-strain. Our study provides supporting evidence for the use of FMDV 2A to develop a bivalent genetically-engineered vaccine.
文摘VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.