期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Model-Based Systems Engineering Approach to Design a Human Settlement to Better Serve Displaced People
1
作者 Anicet Adjahossou 《Open Journal of Applied Sciences》 2024年第4期865-880,共16页
The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie... The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development. 展开更多
关键词 Humanitarian Settlement Human Settlement Sustainability systems Engineering Model-Based systems Engineering systems modeling language
下载PDF
A Systems Approach to Assessing Sustainability Capacity in Kalobeyei Refugee Settlement in Turkana County, Kenya
2
作者 Anicet Adjahossou 《Open Journal of Applied Sciences》 2024年第4期833-848,共16页
Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the la... Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary. 展开更多
关键词 Humanitarian Settlement systems Engineering (SE) SUSTAINABILITY Capacity Assessment Model-Based systems Engineering (MBSE) systems modeling language (SysML)
下载PDF
A Triple Nexus Water-Energy-Housing (WEH) Framework Modelling towards Improved Decision-Making in Humanitarian Operations
3
作者 Anicet Adjahossou 《Open Journal of Applied Sciences》 2024年第4期927-949,共23页
Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute uns... Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute unsustainability to inadequate provision of basic resources and highlight the apparent bottlenecks that prevent access to the meaningful data needed to plan and remedy problems. Most operations have relied on an “ad hoc ism” approach, employing parallel and disconnected data processing methods, resulting in a wide range of data being collected without subsequent prioritization to optimize interconnections that could enhance performance. There have been little efforts to study the trade-offs potentially at stake. This work proposes a new framework enabling all subsystems to operate in a single system and focusing on data processing perspective. To achieve this, this paper proposes a Triple Nexus Framework as an attempt to integrate water, energy, and housing sector data derived from a specific sub-system within the overall system in the application of Model-Based Systems Engineering. Understanding the synergies between water, energy, and housing, Systems Engineering characterizes the triple nexus framework and identifies opportunities for improved decision-making in processing operational data from these sectors. Two scenarios illustrate how an integrated platform could be a gateway to access meaningful operational data in the system and a starting point for modeling integrated human settlement systems. Upon execution, the model is tested for nexus megadata processing, and the optimization simulation yielded 67% satisfactory results, demonstrating that an integrated system could improve sustainability, and that capacity building in service delivery is more than beneficial. 展开更多
关键词 Humanitarian Settlement Nexus Framework WATER ENERGY HOUSING Sustainability systems Engineering (SE) Model-Based systems Engineering (MBSE) systems modeling language (SysML)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部