Elaborate regulation of gene expression is required for plants to maintain normal growth,development,and reproduction.MicroRNAs(miRNAs)and transcription factors are key players that control gene expression in plant re...Elaborate regulation of gene expression is required for plants to maintain normal growth,development,and reproduction.MicroRNAs(miRNAs)and transcription factors are key players that control gene expression in plant regulatory networks.The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR(TCP)family comprises plantspecific transcription factors that contain a conserved TCP domain of 59 amino acids.Some members of this family are targeted by miR319,one of the most ancient and evolutionarily conserved miRNAs in plants.Accumulating evidence has revealed that miR319-regulated TCP(MRTCP)genes participate extensively in plant development and responses to environmental stress.In this review,the structural characteristics and classifications of TCP transcription factors and the regulatory relationships between TCP transcription factors and miRNAs are introduced.Current knowledge of the regulatory functions of MRTCP genes in multiple biological pathways including leaf development,vascular formation,flowering,hormone signaling,and response to environmental stresses such as cold,salt,and drought is summarized.This review will be beneficial for understanding the roles of the MRTCP-mediated regulatory network and its molecular mechanisms in plant development and stress response,and provides a theoretical basis for plant genetic improvement.展开更多
The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control.However,little is known about the coordinated regulation of leaf developmen...The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control.However,little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants.Here,we reported that TCP TFs are involved in both catechin biosynthesis and leaf development.An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production.CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat(MBW)complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase(CsANSl)and anthocyanidin reductase(CsANRl).Four types of microRNA/target modules,miR319b/CsTCP3-4,miR164b/CsCUC,miR396/CsGRF-GIF,and miR165b/HD-ZIPIII ones,were also identified and characterized for their functions in the regulation of the development of teaplant shoot tips and leaf shape.The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different teaplant varieties.Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b(miR319b),which targets the transcripts of CsTCP3 and CsTCP4.Thus,CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis.Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.展开更多
Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP sol...Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP solutions to optimize TCP performance over satellite is discouraged to allow dynamic network reconfigurations. To opposite, an endto-end TCP performance evaluation on such a challenging scenario, with possible large latency and transmission losses, is herein considered of paramount importance. Several TCP variants exist to tackle different aspects of communication networks. In Linux, the different TCP congestion control schemes differ from the theoretical formulations and RFC specifications, introducing a varying set of optimizations and options. This aspect makes difficult to identify a standard/reference TCP version for the proposed scenario, while testing with the real protocol stacks is deemed necessary to obtain consistent results. In addition, an innovative end-to-end TCP, namely TCP Wave, is introduced to replace the traditional window-based transmission with a burst-based strategy, representing a valid alternative to Linux TCP. To offer a fair, realistic and comprehensive evaluation, we configured a simulation setup where different Linux TCPs can be run within ns-3 network simulator and compared with TCP Wave.展开更多
基金supported by the National Natural Science Foundation of China(31501335,31872874)the Natural Science Foundation of Jiangsu Province(BE2018356)+4 种基金the Undergraduate Training Program for Innovation and Entrepreneurship(XKYCX18_120,XKYCX19_151)the Top Talent Support Programthe Qinglan Project of Yangzhou University for Yujie Fangthe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Project of Special Funding for Crop Science Discipline Development。
文摘Elaborate regulation of gene expression is required for plants to maintain normal growth,development,and reproduction.MicroRNAs(miRNAs)and transcription factors are key players that control gene expression in plant regulatory networks.The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR(TCP)family comprises plantspecific transcription factors that contain a conserved TCP domain of 59 amino acids.Some members of this family are targeted by miR319,one of the most ancient and evolutionarily conserved miRNAs in plants.Accumulating evidence has revealed that miR319-regulated TCP(MRTCP)genes participate extensively in plant development and responses to environmental stress.In this review,the structural characteristics and classifications of TCP transcription factors and the regulatory relationships between TCP transcription factors and miRNAs are introduced.Current knowledge of the regulatory functions of MRTCP genes in multiple biological pathways including leaf development,vascular formation,flowering,hormone signaling,and response to environmental stresses such as cold,salt,and drought is summarized.This review will be beneficial for understanding the roles of the MRTCP-mediated regulatory network and its molecular mechanisms in plant development and stress response,and provides a theoretical basis for plant genetic improvement.
基金the Nati onal Key Resea rch and Development Program of China(2018YFD1000601)the Key Research and Development(R&D)Program of Anhui Province(18030701155)funding from An hui Agr icult ural Univer sity,and funding from the State Key Lab oratory of Tea Plant Biology and Utilization.
文摘The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control.However,little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants.Here,we reported that TCP TFs are involved in both catechin biosynthesis and leaf development.An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production.CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat(MBW)complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase(CsANSl)and anthocyanidin reductase(CsANRl).Four types of microRNA/target modules,miR319b/CsTCP3-4,miR164b/CsCUC,miR396/CsGRF-GIF,and miR165b/HD-ZIPIII ones,were also identified and characterized for their functions in the regulation of the development of teaplant shoot tips and leaf shape.The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different teaplant varieties.Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b(miR319b),which targets the transcripts of CsTCP3 and CsTCP4.Thus,CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis.Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.
文摘Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP solutions to optimize TCP performance over satellite is discouraged to allow dynamic network reconfigurations. To opposite, an endto-end TCP performance evaluation on such a challenging scenario, with possible large latency and transmission losses, is herein considered of paramount importance. Several TCP variants exist to tackle different aspects of communication networks. In Linux, the different TCP congestion control schemes differ from the theoretical formulations and RFC specifications, introducing a varying set of optimizations and options. This aspect makes difficult to identify a standard/reference TCP version for the proposed scenario, while testing with the real protocol stacks is deemed necessary to obtain consistent results. In addition, an innovative end-to-end TCP, namely TCP Wave, is introduced to replace the traditional window-based transmission with a burst-based strategy, representing a valid alternative to Linux TCP. To offer a fair, realistic and comprehensive evaluation, we configured a simulation setup where different Linux TCPs can be run within ns-3 network simulator and compared with TCP Wave.