Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the...Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of t...The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.展开更多
Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H...Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.展开更多
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C...Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.展开更多
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fue...Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.展开更多
In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance...In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches.展开更多
As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of th...As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.展开更多
The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSC...The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSCs to meet the above requirements.Here,an organohydrogel electrolyte,featured with high salt tolerance,ultralow freezing point,and strong self-healing ability,is experimentally realized via modulating its inner dynamic bonds.Spectroscopic and theoretical analysis reveal that dimethyl sulfoxide has the ability to reconstruct Li^(+)solvation structure,and interact with free water and polyvinyl alcohol chains via forming hydrogen bonds.The organohydrogel electrolyte is employed to build MSCs,which show a boosted energy density,promising wide temperature range-and damage-tolerant ability.These attractive features make the designed organohydrogel electrolyte have great potential to advance MSCs.展开更多
Solid oxide fuel cells(SOFCs) that operate at intermediate temperatures of 600 to 800℃ have recently received increased attention due to their improved durability, more rapid startup and shutdown, better sealing and ...Solid oxide fuel cells(SOFCs) that operate at intermediate temperatures of 600 to 800℃ have recently received increased attention due to their improved durability, more rapid startup and shutdown, better sealing and lower cost than their counterparts operate at high temperatures. Nevertheless, intermediatetemperature SOFCs(IT-SOFCs) with popular perovskite cathodes contain alkaline-earth elements, which are prone to reaction with carbon dioxide(CO_(2)), even when the CO_(2) content is comparatively low. In this work, an alkaline-earth metal-free Ruddlesden-Popper oxide, Nd_(1.8)La_(0.2)Ni_(0.74)Cu_(0.21)Ga_(0.05)O_(4+δ)(NLNCG), is developed for IT-SOFC cathodes. The cell is based on an electrolyte with 8%(mol) Y_(2)O_(3)-stabilized Zr O_(2)(8YSZ). The NLNCG cathode exhibits an excellent CO_(2) tolerance, as proven by thermogravimetry analysis,in situ X-ray diffraction, I-V-P test, and electrochemical impedance spectroscopy(EIS), and stability measurements. The anode-supported single-cell Ni O-YSZ|YSZ|NLNCG outputs a peak power density of 0.522 W·cm^(-2) at 800℃. These findings suggest that NLNCG could be a highly suitable cathode material with CO_(2) tolerance for IT-SOFCs.展开更多
Advanced electrolyte engineering is an important strategy for developing high-efficacy lithium(Li)metal batteries(LMBs).Unfortunately,the current electrolytes limit the scope for creating batteries that perform well o...Advanced electrolyte engineering is an important strategy for developing high-efficacy lithium(Li)metal batteries(LMBs).Unfortunately,the current electrolytes limit the scope for creating batteries that perform well over temperature ranges.Here,we present a new electrolyte design that uses fluorosulfonyl carboxylate as a non-solvating solvent to form difluoroxalate borate(DFOB-)anion-rich solvation sheath,to realize high-performance working of temperature-tolerant LMBs.With this optimized electrolyte,favorable SEI and CEI chemistries on Li metal anode and nickel-rich cathode are achieved,respectively,leading to fast Li^(+)transfer kinetics,dendrite-free Li deposition and suppressed electrolyte deterioration.Therefore,Li||LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2)batteries with a thin Li foil(50μm)show a long-term cycling lifespan over 400 cycles at 1C and a superior capacity retention of 90%after 200 cycles at 0.5C under 25℃.Moreover,this electrolyte extends the operating temperature from-10 to 30℃and significantly improve the capacity retention and Coulombic efficiency of batteries are improved at high temperature(60℃).Fluorosulfonyl carboxylates thus have considerable potential for use in high-performance and allweather LMBs,which broadens the new exploring of electrolyte design.展开更多
The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the...The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the Byzantine Fault Tolerance(BFT)protocol,which often suffers fromslow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus.In this paper,this paper proposes a new dual-mode consensus protocol based on node identity authentication.It divides the consensus process into two subprotocols:Check_BFT and Fast_BFT.In Check_BFT,the replicas authenticate the primary’s identity by monitoring its behaviors.First,assume that the systemis in a pessimistic environment,Check_BFT protocol detects whether the current environment is safe and whether the primary is an honest node;Enter the fast consensus stage after confirming the environmental safety,and implement Fast_BFT protocol.It is assumed that there are 3f+1 nodes in total.If more than 2f+1 nodes identify that the primary is honest,it will enter the Fast_BFT process.In Fast_BFT,the primary is allowed to handle transactions alone,and the replicas can only receive the messages sent by the primary.The experimental results show that the CF-BFT protocol significantly reduces the communication overhead and improves the throughput and scalability of the consensus protocol.Compared with the SAZyzz protocol,the throughput is increased by 3 times in the best case and 60%in the worst case.展开更多
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ...In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.展开更多
Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect th...Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.展开更多
R5002_12, a salt tolerant line of Phragmites communis Trin., which was obtained from ethyl methane sulfonate (EMS) treated callus selected under saline stress, was compared with its wild line in respect to their m...R5002_12, a salt tolerant line of Phragmites communis Trin., which was obtained from ethyl methane sulfonate (EMS) treated callus selected under saline stress, was compared with its wild line in respect to their molecular biological, physiological and biochemical characterizations. Five arbitrary primers were screened which showed differences in DNA amplified polymorphism between the variant and its wild line. Some new proteins appeared in the salt tolerant plant under salt stress. Electrophoresis of peroxidase and esterase also showed some differences in isozyme expression between them. The chlorophyll content of the variant was higher than that of the original variety, whether the plants were under salt stress or not.展开更多
In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation res...In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金the National Natural Science Foundation of China(Grant No.31900361).
文摘Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by Australian Research Council,Australia grants to Sergey Shabala and Kadambot H.M.Siddique。
文摘The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.
基金the financial support from the National Key Research and Development Program of China(2022YFB4600101)the National Natural Science Foundation of China(52175201,52005484,and 52205228)+6 种基金the Research Program of Science and Technology Department of Gansu Province(21YF5FA139 and 22JR5RA107)the Shandong Provincial Natural Science Foundation(ZR2023OE090)the Major Program(ZYFZFX-2)the Cooperation Foundation for Young Scholars(HZJJ23-02)of the Lanzhou Institute of Chemical Physics,CASthe Western Light Project,CAS(xbzg-zdsys-202007)the Taishan Scholars Programthe Oasis Scholar of Shihezi University。
文摘Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.
基金supported by the National Natural Science Foundation of China (Grant Nos.32100283 and 32071932)the Xinjiang ‘Tianchi Talent’ Recruitment Program, China。
文摘Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
基金supported by the National Natural Science Foundations of China(22150410340)the Chongqing Science&Technology Commission(catc2018jcyjax0582)。
文摘Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.
文摘In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches.
文摘As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.
基金National Natural Science Foundation of China(52072297 and 51907149)Key R&D Plan of Shaanxi Province(2021GXLH-Z-068)+1 种基金China Postdoctoral Science Foundation(2019M653609)the Young Talent Support Plan of Xi’an Jiaotong University。
文摘The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSCs to meet the above requirements.Here,an organohydrogel electrolyte,featured with high salt tolerance,ultralow freezing point,and strong self-healing ability,is experimentally realized via modulating its inner dynamic bonds.Spectroscopic and theoretical analysis reveal that dimethyl sulfoxide has the ability to reconstruct Li^(+)solvation structure,and interact with free water and polyvinyl alcohol chains via forming hydrogen bonds.The organohydrogel electrolyte is employed to build MSCs,which show a boosted energy density,promising wide temperature range-and damage-tolerant ability.These attractive features make the designed organohydrogel electrolyte have great potential to advance MSCs.
基金the financial support by the National Key Research and Development Program of China (2020YFB1505603)the National Natural Science Foundation of China (22075086)+1 种基金the Guangdong Basic and Applied Basic Research Foundation (2020A1515011157, 2022A1515010980)the Doctor Scientific Research Startup Foundation of Jinggangshan University (JZB1324)。
文摘Solid oxide fuel cells(SOFCs) that operate at intermediate temperatures of 600 to 800℃ have recently received increased attention due to their improved durability, more rapid startup and shutdown, better sealing and lower cost than their counterparts operate at high temperatures. Nevertheless, intermediatetemperature SOFCs(IT-SOFCs) with popular perovskite cathodes contain alkaline-earth elements, which are prone to reaction with carbon dioxide(CO_(2)), even when the CO_(2) content is comparatively low. In this work, an alkaline-earth metal-free Ruddlesden-Popper oxide, Nd_(1.8)La_(0.2)Ni_(0.74)Cu_(0.21)Ga_(0.05)O_(4+δ)(NLNCG), is developed for IT-SOFC cathodes. The cell is based on an electrolyte with 8%(mol) Y_(2)O_(3)-stabilized Zr O_(2)(8YSZ). The NLNCG cathode exhibits an excellent CO_(2) tolerance, as proven by thermogravimetry analysis,in situ X-ray diffraction, I-V-P test, and electrochemical impedance spectroscopy(EIS), and stability measurements. The anode-supported single-cell Ni O-YSZ|YSZ|NLNCG outputs a peak power density of 0.522 W·cm^(-2) at 800℃. These findings suggest that NLNCG could be a highly suitable cathode material with CO_(2) tolerance for IT-SOFCs.
基金the support from the Key-Area Research and Development Program of Guangdong Province (2020B090919003)the Yunnan Major Scientific and Technological Projects (202202AG050003)+4 种基金the Natural Science Foundation of China (22202078, 51904135,52162030)the Department of Education of Guangdong Province(2020KQNCX082)the Applied Basic Research Foundation of Yunnan Province (202103AA080019)the National Key R&D Program of China (2018YFB01040)the support of the supported by the Testing Technology Center of Materials and Devices of Tsinghua Shenzhen International Graduate School (SIGS)
文摘Advanced electrolyte engineering is an important strategy for developing high-efficacy lithium(Li)metal batteries(LMBs).Unfortunately,the current electrolytes limit the scope for creating batteries that perform well over temperature ranges.Here,we present a new electrolyte design that uses fluorosulfonyl carboxylate as a non-solvating solvent to form difluoroxalate borate(DFOB-)anion-rich solvation sheath,to realize high-performance working of temperature-tolerant LMBs.With this optimized electrolyte,favorable SEI and CEI chemistries on Li metal anode and nickel-rich cathode are achieved,respectively,leading to fast Li^(+)transfer kinetics,dendrite-free Li deposition and suppressed electrolyte deterioration.Therefore,Li||LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2)batteries with a thin Li foil(50μm)show a long-term cycling lifespan over 400 cycles at 1C and a superior capacity retention of 90%after 200 cycles at 0.5C under 25℃.Moreover,this electrolyte extends the operating temperature from-10 to 30℃and significantly improve the capacity retention and Coulombic efficiency of batteries are improved at high temperature(60℃).Fluorosulfonyl carboxylates thus have considerable potential for use in high-performance and allweather LMBs,which broadens the new exploring of electrolyte design.
基金supported by the Key Laboratory of Network Password Technology in Henan Province,China(LNCT2022-A20)the Major Science and Technology Special Project of Henan Province,China(Nos.201300210100,201300210200)+2 种基金the Key Scientific Research Project of Higher Education Institutions in Henan Province,China(No.23ZX017)the Key Special Project for Science and Technology Collaborative Innovation in Zhengzhou City,Henan Province,China(No.21ZZXTCX07)and the Key Science and Technology Project of Henan Province,China(No.232102211082).
文摘The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the Byzantine Fault Tolerance(BFT)protocol,which often suffers fromslow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus.In this paper,this paper proposes a new dual-mode consensus protocol based on node identity authentication.It divides the consensus process into two subprotocols:Check_BFT and Fast_BFT.In Check_BFT,the replicas authenticate the primary’s identity by monitoring its behaviors.First,assume that the systemis in a pessimistic environment,Check_BFT protocol detects whether the current environment is safe and whether the primary is an honest node;Enter the fast consensus stage after confirming the environmental safety,and implement Fast_BFT protocol.It is assumed that there are 3f+1 nodes in total.If more than 2f+1 nodes identify that the primary is honest,it will enter the Fast_BFT process.In Fast_BFT,the primary is allowed to handle transactions alone,and the replicas can only receive the messages sent by the primary.The experimental results show that the CF-BFT protocol significantly reduces the communication overhead and improves the throughput and scalability of the consensus protocol.Compared with the SAZyzz protocol,the throughput is increased by 3 times in the best case and 60%in the worst case.
文摘In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.
基金National Natural Science Foundation of China(grant number:21902008)Doctor Research Program of Shandong University of Technology(No.4041/420117).
文摘Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.
文摘R5002_12, a salt tolerant line of Phragmites communis Trin., which was obtained from ethyl methane sulfonate (EMS) treated callus selected under saline stress, was compared with its wild line in respect to their molecular biological, physiological and biochemical characterizations. Five arbitrary primers were screened which showed differences in DNA amplified polymorphism between the variant and its wild line. Some new proteins appeared in the salt tolerant plant under salt stress. Electrophoresis of peroxidase and esterase also showed some differences in isozyme expression between them. The chlorophyll content of the variant was higher than that of the original variety, whether the plants were under salt stress or not.
文摘In this paper, the multisensor data fusion technique of a fault tolerant integrated navigation system is discussed. A neural approach for data fusion is proposed for multisensor integrated systems. The simulation results show that this neural approach for data fusion is feasible.