Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
洋葱路由(Tor, the onion route)网络加密流的关联分析是其追踪溯源的核心技术之一;针对当前基于深度学习的流关联方法存在的时间特征不可靠且初级特征表征能力不强的问题,提出了一种基于时频分析和图卷积神经网络的关联分析方法,该方...洋葱路由(Tor, the onion route)网络加密流的关联分析是其追踪溯源的核心技术之一;针对当前基于深度学习的流关联方法存在的时间特征不可靠且初级特征表征能力不强的问题,提出了一种基于时频分析和图卷积神经网络的关联分析方法,该方法使用Tor网络流量的数据包长度信息作为原始特征序列,将数据包的包长度序列通过时频分布函数映射到时频域,并进一步将其嵌入为图结构数据,同时使用图卷积神经网络提取高阶特征,最后将得到的高阶特征输入三元组网络以实现相似流量的关联。实验结果表明误报率为0.1%时,所提方法的关联准确率可达到83.4%,明显优于已有的DeepCorr和Attcorr方法。展开更多
The Large High Altitude Air Shower Observatory(LHAASO),a major project as part of China’s national scientific and technological infrastructure,passed the national acceptance assessment and formally went into operatio...The Large High Altitude Air Shower Observatory(LHAASO),a major project as part of China’s national scientific and technological infrastructure,passed the national acceptance assessment and formally went into operation on May 10.Dedicated to cosmic ray observation and research,the design of LHAASO was approved by the national authorities on December 31,2015.Jointly sponsored by the Chinese Academy of Sciences(CAS)and the People’s Government of Sichuan Province,the construction of the principal part of the facility began in 2017 and was completed in 2021.展开更多
放疗是肿瘤的重要治疗手段之一,仍有部分患者在接受放疗后存在复发或抗拒。哺乳动物雷帕霉素靶蛋白(mamma-lian target of rapamycin,mTOR)是PI3K/AKT信号通路的主要效应分子,分为mTORC1和mTORC2,对细胞生长及增殖、细胞周期进展及蛋白...放疗是肿瘤的重要治疗手段之一,仍有部分患者在接受放疗后存在复发或抗拒。哺乳动物雷帕霉素靶蛋白(mamma-lian target of rapamycin,mTOR)是PI3K/AKT信号通路的主要效应分子,分为mTORC1和mTORC2,对细胞生长及增殖、细胞周期进展及蛋白翻译等均有重要调节作用。mTOR异常表达与肿瘤发生及治疗反应密切相关。肿瘤的放疗敏感性与"4R"效应有关。mTOR抑制剂可通过影响细胞周期进展、DNA损伤修复及抗血管形成等多种途径发挥放疗增敏作用。初期研究证实依维莫司具有放疗增敏作用并且毒性可耐受。应用mTOR抑制剂后不同细胞及个体反应不同,可能与基因表达状态有关,需进一步研究证实。展开更多
Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens w...Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.展开更多
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
文摘洋葱路由(Tor, the onion route)网络加密流的关联分析是其追踪溯源的核心技术之一;针对当前基于深度学习的流关联方法存在的时间特征不可靠且初级特征表征能力不强的问题,提出了一种基于时频分析和图卷积神经网络的关联分析方法,该方法使用Tor网络流量的数据包长度信息作为原始特征序列,将数据包的包长度序列通过时频分布函数映射到时频域,并进一步将其嵌入为图结构数据,同时使用图卷积神经网络提取高阶特征,最后将得到的高阶特征输入三元组网络以实现相似流量的关联。实验结果表明误报率为0.1%时,所提方法的关联准确率可达到83.4%,明显优于已有的DeepCorr和Attcorr方法。
文摘The Large High Altitude Air Shower Observatory(LHAASO),a major project as part of China’s national scientific and technological infrastructure,passed the national acceptance assessment and formally went into operation on May 10.Dedicated to cosmic ray observation and research,the design of LHAASO was approved by the national authorities on December 31,2015.Jointly sponsored by the Chinese Academy of Sciences(CAS)and the People’s Government of Sichuan Province,the construction of the principal part of the facility began in 2017 and was completed in 2021.
文摘放疗是肿瘤的重要治疗手段之一,仍有部分患者在接受放疗后存在复发或抗拒。哺乳动物雷帕霉素靶蛋白(mamma-lian target of rapamycin,mTOR)是PI3K/AKT信号通路的主要效应分子,分为mTORC1和mTORC2,对细胞生长及增殖、细胞周期进展及蛋白翻译等均有重要调节作用。mTOR异常表达与肿瘤发生及治疗反应密切相关。肿瘤的放疗敏感性与"4R"效应有关。mTOR抑制剂可通过影响细胞周期进展、DNA损伤修复及抗血管形成等多种途径发挥放疗增敏作用。初期研究证实依维莫司具有放疗增敏作用并且毒性可耐受。应用mTOR抑制剂后不同细胞及个体反应不同,可能与基因表达状态有关,需进一步研究证实。
文摘Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.