The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simula...The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simulation is an effective way to study groundwater flow system.In this paper,the ideal model is generalized according to the fundamental characteristics of groundwater system in inland basins of Western China.The simulation method of variable density flow on the development of groundwater system in inland basins is established by using EOS9 module in TOUGHREACT numerical simulation software.In accordance with the groundwater streamline,the groundwater flow system is divided into three levels,which are regional groundwater flow system,intermediate groundwater flow system and local groundwater flow system.Based on the calculation of the renewal rate of groundwater,the analysis shows that the increase of fluid density in the central part of the basin will restrain the development of regional groundwater flow system,resulting in a decrease of the circulation rate from 32.28% to 17.62% and a certain enhancement to the local groundwater flow system,which increased from 37.29% to 51.94%.展开更多
The computerized geochemical modeling, a useful tool to understand the diagenetic processes influencing the quality of hydrocarbon reservoirs, is performed by using different modules of computer codes based on the the...The computerized geochemical modeling, a useful tool to understand the diagenetic processes influencing the quality of hydrocarbon reservoirs, is performed by using different modules of computer codes based on the thermodynamic and chemical kinetic principles and their associated parameters. As observed in the reservoir lithofacies deposited from the marine sediment-gravity flows, a case study of diagenesis is presented here from the Espírito Santo Basin in southeastern Brazil. The study uses the Geochemist's Workbench(GWB~(TM)), PHREEQC~(TM) and TOUGHREACT~(TM) computation packages. The comparison of performances of these packages demonstrates the convergence of results from the software-based geochemical modeling with the petrographic observation of dissolution, albitization, kaolinization, and the precipitation of calcite and dolomite. Moreover, with limited data points, e.g., the sedimentary petrographic data acquired from limited number of boreholes, the computer simulation establishes itself to be a powerful quantitative method estimating the degree and type of diagenetic alteration of turbidite reservoir bodies in contact with a source of saline-water influx associated with salt tectonics.Therefore, using the limited petrographic data points, the geochemical computer-simulation method can even be utilized and extrapolated for areas where similar geological context is interpreted but no borehole data are available. Hence, porosity of turbidite reservoir lithofacies can be predicted in relation to the spatial distribution of dissolution, kaolinization, and albitization of feldspars and authigenic carbonate precipitation.展开更多
基金jointly funded by the National Natural Science Foundation of China (41702282, 41602268)China Geological Survey Project (DD20160311, DD20160238)the Basic Research Service Fee of the Chinese Academy of Geological Sciences (YYWF201626)
文摘The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simulation is an effective way to study groundwater flow system.In this paper,the ideal model is generalized according to the fundamental characteristics of groundwater system in inland basins of Western China.The simulation method of variable density flow on the development of groundwater system in inland basins is established by using EOS9 module in TOUGHREACT numerical simulation software.In accordance with the groundwater streamline,the groundwater flow system is divided into three levels,which are regional groundwater flow system,intermediate groundwater flow system and local groundwater flow system.Based on the calculation of the renewal rate of groundwater,the analysis shows that the increase of fluid density in the central part of the basin will restrain the development of regional groundwater flow system,resulting in a decrease of the circulation rate from 32.28% to 17.62% and a certain enhancement to the local groundwater flow system,which increased from 37.29% to 51.94%.
文摘The computerized geochemical modeling, a useful tool to understand the diagenetic processes influencing the quality of hydrocarbon reservoirs, is performed by using different modules of computer codes based on the thermodynamic and chemical kinetic principles and their associated parameters. As observed in the reservoir lithofacies deposited from the marine sediment-gravity flows, a case study of diagenesis is presented here from the Espírito Santo Basin in southeastern Brazil. The study uses the Geochemist's Workbench(GWB~(TM)), PHREEQC~(TM) and TOUGHREACT~(TM) computation packages. The comparison of performances of these packages demonstrates the convergence of results from the software-based geochemical modeling with the petrographic observation of dissolution, albitization, kaolinization, and the precipitation of calcite and dolomite. Moreover, with limited data points, e.g., the sedimentary petrographic data acquired from limited number of boreholes, the computer simulation establishes itself to be a powerful quantitative method estimating the degree and type of diagenetic alteration of turbidite reservoir bodies in contact with a source of saline-water influx associated with salt tectonics.Therefore, using the limited petrographic data points, the geochemical computer-simulation method can even be utilized and extrapolated for areas where similar geological context is interpreted but no borehole data are available. Hence, porosity of turbidite reservoir lithofacies can be predicted in relation to the spatial distribution of dissolution, kaolinization, and albitization of feldspars and authigenic carbonate precipitation.