In CSCW system, there are many long-time, cooperative, interactive transactions. Traditional transaction model and advanced transaction model do not effectively support transaction processing in CSCW system. In this p...In CSCW system, there are many long-time, cooperative, interactive transactions. Traditional transaction model and advanced transaction model do not effectively support transaction processing in CSCW system. In this paper, a semantics-based cooperative transaction model(SCTM) is put forward. This model is based on the semantics information of cooperative process and data objects, and can satisfy the demands of transaction processing in CSCW system.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
Thucydides asserts that the occupation of Decelea by the Spartans in 413 BC made the grain supply for Athens costly by forcing the transport from land onto the sea.This calls into question the well-established consens...Thucydides asserts that the occupation of Decelea by the Spartans in 413 BC made the grain supply for Athens costly by forcing the transport from land onto the sea.This calls into question the well-established consensus that sea transport was far cheaper than land transport.This paper contends that the cost of protecting supply lines-specifically the expenses associated with the warships which escorted the supply ships-rendered the grain transported on the new route exceptionally costly.In this paper,the benefits and drawbacks of a maritime economy,including transaction costs,trade dependencies,and the capabilities of warships and supply ships are discussed.展开更多
In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systema...In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.展开更多
The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete p...The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete picture of data flaw and transaction,this paper presents a systematic overview of the flow and transaction of personal,corporate and public data on the basis of data factor classification from various perspectives.By utilizing various sources of information,this paper estimates the volume of data generation&storage and the volume&trend of data market transactions for major economies in the world with the following findings:(i)Data classification is diverse due to a broad variety of applying scenarios,and data transaction and profit distribution are complex due to heterogenous entities,ownerships,information density and other attributes of different data types.(ii)Global data transaction has presented with the characteristics of productization,servitization and platform-based mode.(iii)For major economies,there is a commonly observed disequilibrium between data generation scale and storage scale,which is particularly striking for China.(i^v)The global data market is in a nascent stage of rapid development with a transaction volume of about 100 billion US dollars,and China s data market is even more underdeveloped and only accounts for some 10%of the world total.All sectors of the society should be flly aware of the diversity and complexity of data factor classification and data transactions,as well as the arduous and long-term nature of developing and improving relevant institutional systems.Adapting to such features,efforts should be made to improve data classification,enhance computing infrastructure development,foster professional data transaction and development institutions,and perfect the data governance system.展开更多
Enterprise Resource Planning(ERP)software is extensively used for the management of business processes.ERP offers a system of integrated applications with a shared central database.Storing all business-critical inform...Enterprise Resource Planning(ERP)software is extensively used for the management of business processes.ERP offers a system of integrated applications with a shared central database.Storing all business-critical information in a central place raises various issues such as data integrity assurance and a single point of failure,which makes the database vulnerable.This paper investigates database and Blockchain integration,where the Blockchain network works in synchronization with the database system,and offers a mechanism to validate the transactions and ensure data integrity.Limited research exists on Blockchain-based solutions for the single point of failure in ERP.We established in our study that for concurrent access control andmonitoring of ERP,private permissioned Blockchain using Proof of Elapsed Time consensus is more suitable.The study also investigated the bottleneck issue of transaction processing rates(TPR)of Blockchain consensus,specifically ERP’s TPR.The paper presents systemarchitecture that integrates Blockchain with an ERP system using an application interface.展开更多
Blockchain is a viable solution to provide data integrity for the enormous volume of 5G IoT social data, while we need to break through the throughput bottleneck of blockchain. Sharding is a promising technology to so...Blockchain is a viable solution to provide data integrity for the enormous volume of 5G IoT social data, while we need to break through the throughput bottleneck of blockchain. Sharding is a promising technology to solve the problem of low throughput in blockchains. However, cross-shard communication hinders the effective improvement of blockchain throughput. Therefore, it is critical to reasonably allocate transactions to different shards to improve blockchain throughput. Existing research on blockchain sharding mainly focuses on shards formation, configuration, and consensus, while ignoring the negative impact of cross-shard communication on blockchain throughput. Aiming to maximize the throughput of transaction processing, we study how to allocate blockchain transactions to shards in this paper. We propose an Associated Transaction assignment algorithm based on Closest Fit (ATCF). ATCF classifies associated transactions into transaction groups which are then assigned to different shards in the non-ascending order of transaction group sizes periodically. Within each epoch, ATCF tries to select a shard that can handle all the transactions for each transaction group. If there are multiple such shards, ATCF selects the shard with the remaining processing capacity closest to the number of transactions in the transaction group. When no such shard exists, ATCF chooses the shard with the largest remaining processing capacity for the transaction group. The transaction groups that cannot be completely processed within the current epoch will be allocated in the subsequent epochs. We prove that ATCF is a 2-approximation algorithm for the associated transaction assignment problem. Simulation results show that ATCF can effectively improve the blockchain throughput and reduce the number of cross-shard transactions.展开更多
The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved ...The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved in Blockchain and to tackle this issue,Cross-Chain based Transaction(CCT)is introduced.Traditional industries have been restructured by the introduction of Internet of Things(IoT)to become smart industries through the feature of data-driven decision-making.Still,there are a few limitations,like decentralization,security vulnerabilities,poor interoperability,as well as privacy concerns in IoTs.To overcome this limitation,Blockchain has been employed to assure a safer transaction process,especially in asset exchanges.In recent decades,scalable local ledgers implement Blockchains,simultaneously sustaining peer validations of transactions which can be at local or global levels.From the single Hyperledger-based blockchains system,the CCT takes the transaction amid various chains.In addition,the most significant factor for this registration processing strategy is the Signature to ensure security.The application of the Quantum cryptographic algorithm amplifies the proposed Hyperledger-based blockchains,to strengthen the safety of the process.The key has been determined by restricting the number of transactions that reach the global Blockchain using the quantum-based hash function and accomplished by scalable local ledgers,and peer validations of transactions at local and global levels without any issues.The rate of transaction processing for entire peers has enhanced with the ancillary aid of the proposed solution,as it includes the procedure of load distribution.Without any boosted enhancement,the recommended solution utilizes the current transaction strategy,and also,it’s aimed at scalability,resource conservation,and interoperability.The experimental results of the system have been evaluated using the metrics like block weight,ledger memory,the usage of the central processing unit,and the communication overhead.展开更多
This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data ...This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.展开更多
Cloud computing is the highly demanded technology nowadays.Due to the service oriented architecture,seamless accessibility and other advantages of this advent technology,many transaction rich applications are making u...Cloud computing is the highly demanded technology nowadays.Due to the service oriented architecture,seamless accessibility and other advantages of this advent technology,many transaction rich applications are making use of it.At the same time,it is vulnerable to hacks and threats.Hence securing this environment is of at most important and many research works are being reported focusing on it.This paper proposes a safe storage mechanism using Elliptic curve cryptography(ECC)for the Transaction Rich Applications(TRA).With ECC based security scheme,the security level of the protected system will be increased and it is more suitable to secure the delivered data in the portable devices.The proposed scheme shields the aligning of different kind of data elements to each provider using an ECC algorithm.Analysis,comparison and simulation prove that the proposed system is more effective and secure for the Transaction rich applications in Cloud.展开更多
An integrated method for concurrency control in parallel real-time databases has been proposed in this paper. The nested transaction model has been investigated to offer more atomic execution units and finer grained c...An integrated method for concurrency control in parallel real-time databases has been proposed in this paper. The nested transaction model has been investigated to offer more atomic execution units and finer grained control within in a transaction. Based on the classical nested locking protocol and the speculative concurrency control approach, a two-shadow adaptive concurrency control protocol, which combines the Sacrifice based Optimistic Concurrency Control (OPT-Sacrifice) and High Priority two-phase locking (HP2PL) algorithms together to support both optimistic and pessimistic shadow of each sub-transaction, has been proposed to increase the likelihood of successful timely commitment and to avoid unnecessary replication overload.展开更多
As the typical peer-to-peer distributed networks, blockchain systemsrequire each node to copy a complete transaction database, so as to ensure newtransactions can by verified independently. In a blockchain system (e.g...As the typical peer-to-peer distributed networks, blockchain systemsrequire each node to copy a complete transaction database, so as to ensure newtransactions can by verified independently. In a blockchain system (e.g., bitcoinsystem), the node does not rely on any central organization, and every node keepsan entire copy of the transaction database. However, this feature determines thatthe size of blockchain transaction database is growing rapidly. Therefore, with thecontinuous system operations, the node memory also needs to be expanded tosupport the system running. Especially in the big data era, the increasing networktraffic will lead to faster transaction growth rate. This paper analyzes blockchaintransaction databases and proposes a storage optimization scheme. The proposedscheme divides blockchain transaction database into cold zone and hot zone usingexpiration recognition method based on Least Recently Used (LRU) algorithm. Itcan achieve storage optimization by moving unspent transaction outputs outsidethe in-memory transaction databases. We present the theoretical analysis on theoptimization method to validate the effectiveness. Extensive experiments showour proposed method outperforms the current mechanism for the blockchaintransaction databases.展开更多
Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementation...Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementations made significant performance degradation on NUMA system because they ignored the slower remote memory access. To solve this problem, a latency-based conflict detection and a forecasting-based conflict prevention method were proposed. Using these techniques, the NUMA aware TM system was presented. By reducing the remote memory access and the abort rate of transaction, the experiment results show that the NUMA aware strategies present good practical TM performance on NUMA system.展开更多
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d...In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.展开更多
DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the alg...DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on Map Reduce. Different from the previous parallel clustering method, a two-stage Map Reduce implementation framework is proposed. Each of the stage is implemented by one kind Map Reduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE.展开更多
We study the dividend optimization problem for an insurance company under the consideration of internal competition between different units inside company and transaction costs when dividends occur. The management of ...We study the dividend optimization problem for an insurance company under the consideration of internal competition between different units inside company and transaction costs when dividends occur. The management of the company controls the reinsurance rate, the timing and the amount of dividends paid out to maximize the expected total dividends paid out to the shareholders until ruin time. By solving the corresponding quasi-variational inequality, we obtain the optimal return function and the optimal strategy.展开更多
Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(C...Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.展开更多
This paper deals with how to implement AMBA bus transaction level modeling in SystemC. There are two main techniques used in the whole modeling process, which consist of starting the platform modeling at the transacti...This paper deals with how to implement AMBA bus transaction level modeling in SystemC. There are two main techniques used in the whole modeling process, which consist of starting the platform modeling at the transaction level and using the uniformed modeling language— System C. According to the concepts of interface, port and hierarchical channel introduced in SystemC 2.0, the system of master-channel (AMBA bus) slave is created as the architecture of the AMBA bus transaction level model, which can make it more extendable. The port and interface classes of the model that are prone to program are defined in accordance with the SoC hierarchical design methodology. In addition, method calls, not signal communication, are used between different modules in the model, so the higher-level abstraction is achieved and the simulation performance is improved. The AMBA bus transaction level model is analyzed and certified by simulation experiment, and proved to be completely compliant to the AMBA specification 2.0. Key words AMBA - transaction level - SystemC - SoC CLC number TP 393 Foundation item: Supported by the National High Technology Development 863 Program of China (2002AA1Z1490)Biography: He Zhen (1979-), male, Master candidate, research direction: system level modeling in SoC hardware/software co-design.展开更多
文摘In CSCW system, there are many long-time, cooperative, interactive transactions. Traditional transaction model and advanced transaction model do not effectively support transaction processing in CSCW system. In this paper, a semantics-based cooperative transaction model(SCTM) is put forward. This model is based on the semantics information of cooperative process and data objects, and can satisfy the demands of transaction processing in CSCW system.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
文摘Thucydides asserts that the occupation of Decelea by the Spartans in 413 BC made the grain supply for Athens costly by forcing the transport from land onto the sea.This calls into question the well-established consensus that sea transport was far cheaper than land transport.This paper contends that the cost of protecting supply lines-specifically the expenses associated with the warships which escorted the supply ships-rendered the grain transported on the new route exceptionally costly.In this paper,the benefits and drawbacks of a maritime economy,including transaction costs,trade dependencies,and the capabilities of warships and supply ships are discussed.
文摘In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.
文摘The public has shown great interest in the data factor and data transactions,but the current attention is overly focused on personal behavioral data and transactions happening at Data Exchanges.To deliver a complete picture of data flaw and transaction,this paper presents a systematic overview of the flow and transaction of personal,corporate and public data on the basis of data factor classification from various perspectives.By utilizing various sources of information,this paper estimates the volume of data generation&storage and the volume&trend of data market transactions for major economies in the world with the following findings:(i)Data classification is diverse due to a broad variety of applying scenarios,and data transaction and profit distribution are complex due to heterogenous entities,ownerships,information density and other attributes of different data types.(ii)Global data transaction has presented with the characteristics of productization,servitization and platform-based mode.(iii)For major economies,there is a commonly observed disequilibrium between data generation scale and storage scale,which is particularly striking for China.(i^v)The global data market is in a nascent stage of rapid development with a transaction volume of about 100 billion US dollars,and China s data market is even more underdeveloped and only accounts for some 10%of the world total.All sectors of the society should be flly aware of the diversity and complexity of data factor classification and data transactions,as well as the arduous and long-term nature of developing and improving relevant institutional systems.Adapting to such features,efforts should be made to improve data classification,enhance computing infrastructure development,foster professional data transaction and development institutions,and perfect the data governance system.
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Enterprise Resource Planning(ERP)software is extensively used for the management of business processes.ERP offers a system of integrated applications with a shared central database.Storing all business-critical information in a central place raises various issues such as data integrity assurance and a single point of failure,which makes the database vulnerable.This paper investigates database and Blockchain integration,where the Blockchain network works in synchronization with the database system,and offers a mechanism to validate the transactions and ensure data integrity.Limited research exists on Blockchain-based solutions for the single point of failure in ERP.We established in our study that for concurrent access control andmonitoring of ERP,private permissioned Blockchain using Proof of Elapsed Time consensus is more suitable.The study also investigated the bottleneck issue of transaction processing rates(TPR)of Blockchain consensus,specifically ERP’s TPR.The paper presents systemarchitecture that integrates Blockchain with an ERP system using an application interface.
基金supported by Anhui Provincial Key R&D Program of China(202004a05020040),the open project of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System in China(CEMEE2018Z0102B)the open fund of Intelligent Interconnected Systems Laboratory of Anhui Province(PA2021AKSK0114),Hefei University of Technology.
文摘Blockchain is a viable solution to provide data integrity for the enormous volume of 5G IoT social data, while we need to break through the throughput bottleneck of blockchain. Sharding is a promising technology to solve the problem of low throughput in blockchains. However, cross-shard communication hinders the effective improvement of blockchain throughput. Therefore, it is critical to reasonably allocate transactions to different shards to improve blockchain throughput. Existing research on blockchain sharding mainly focuses on shards formation, configuration, and consensus, while ignoring the negative impact of cross-shard communication on blockchain throughput. Aiming to maximize the throughput of transaction processing, we study how to allocate blockchain transactions to shards in this paper. We propose an Associated Transaction assignment algorithm based on Closest Fit (ATCF). ATCF classifies associated transactions into transaction groups which are then assigned to different shards in the non-ascending order of transaction group sizes periodically. Within each epoch, ATCF tries to select a shard that can handle all the transactions for each transaction group. If there are multiple such shards, ATCF selects the shard with the remaining processing capacity closest to the number of transactions in the transaction group. When no such shard exists, ATCF chooses the shard with the largest remaining processing capacity for the transaction group. The transaction groups that cannot be completely processed within the current epoch will be allocated in the subsequent epochs. We prove that ATCF is a 2-approximation algorithm for the associated transaction assignment problem. Simulation results show that ATCF can effectively improve the blockchain throughput and reduce the number of cross-shard transactions.
文摘The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved in Blockchain and to tackle this issue,Cross-Chain based Transaction(CCT)is introduced.Traditional industries have been restructured by the introduction of Internet of Things(IoT)to become smart industries through the feature of data-driven decision-making.Still,there are a few limitations,like decentralization,security vulnerabilities,poor interoperability,as well as privacy concerns in IoTs.To overcome this limitation,Blockchain has been employed to assure a safer transaction process,especially in asset exchanges.In recent decades,scalable local ledgers implement Blockchains,simultaneously sustaining peer validations of transactions which can be at local or global levels.From the single Hyperledger-based blockchains system,the CCT takes the transaction amid various chains.In addition,the most significant factor for this registration processing strategy is the Signature to ensure security.The application of the Quantum cryptographic algorithm amplifies the proposed Hyperledger-based blockchains,to strengthen the safety of the process.The key has been determined by restricting the number of transactions that reach the global Blockchain using the quantum-based hash function and accomplished by scalable local ledgers,and peer validations of transactions at local and global levels without any issues.The rate of transaction processing for entire peers has enhanced with the ancillary aid of the proposed solution,as it includes the procedure of load distribution.Without any boosted enhancement,the recommended solution utilizes the current transaction strategy,and also,it’s aimed at scalability,resource conservation,and interoperability.The experimental results of the system have been evaluated using the metrics like block weight,ledger memory,the usage of the central processing unit,and the communication overhead.
文摘This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.
文摘Cloud computing is the highly demanded technology nowadays.Due to the service oriented architecture,seamless accessibility and other advantages of this advent technology,many transaction rich applications are making use of it.At the same time,it is vulnerable to hacks and threats.Hence securing this environment is of at most important and many research works are being reported focusing on it.This paper proposes a safe storage mechanism using Elliptic curve cryptography(ECC)for the Transaction Rich Applications(TRA).With ECC based security scheme,the security level of the protected system will be increased and it is more suitable to secure the delivered data in the portable devices.The proposed scheme shields the aligning of different kind of data elements to each provider using an ECC algorithm.Analysis,comparison and simulation prove that the proposed system is more effective and secure for the Transaction rich applications in Cloud.
文摘An integrated method for concurrency control in parallel real-time databases has been proposed in this paper. The nested transaction model has been investigated to offer more atomic execution units and finer grained control within in a transaction. Based on the classical nested locking protocol and the speculative concurrency control approach, a two-shadow adaptive concurrency control protocol, which combines the Sacrifice based Optimistic Concurrency Control (OPT-Sacrifice) and High Priority two-phase locking (HP2PL) algorithms together to support both optimistic and pessimistic shadow of each sub-transaction, has been proposed to increase the likelihood of successful timely commitment and to avoid unnecessary replication overload.
基金supported by Researchers Supporting Project(No.RSP-2020/102)King Saud University,Riyadh,Saudi Arabiathe National Natural Science Foundation of China(Nos.61802031,61772454,61811530332,61811540410)+4 种基金the Natural Science Foundation of Hunan Province,China(No.2019JGYB177)the Research Foundation of Education Bureau of Hunan Province,China(No.18C0216)the“Practical Innovation and Entrepreneurial Ability Improvement Plan”for Professional Degree Graduate students of Changsha University of Science and Technology(No.SJCX201971)Hunan Graduate Scientific Research Innovation Project,China(No.CX2019694)This work is also supported by the Programs of Transformation and Upgrading of Industries and Information Technologies of Jiangsu Province(No.JITC-1900AX2038/01).
文摘As the typical peer-to-peer distributed networks, blockchain systemsrequire each node to copy a complete transaction database, so as to ensure newtransactions can by verified independently. In a blockchain system (e.g., bitcoinsystem), the node does not rely on any central organization, and every node keepsan entire copy of the transaction database. However, this feature determines thatthe size of blockchain transaction database is growing rapidly. Therefore, with thecontinuous system operations, the node memory also needs to be expanded tosupport the system running. Especially in the big data era, the increasing networktraffic will lead to faster transaction growth rate. This paper analyzes blockchaintransaction databases and proposes a storage optimization scheme. The proposedscheme divides blockchain transaction database into cold zone and hot zone usingexpiration recognition method based on Least Recently Used (LRU) algorithm. Itcan achieve storage optimization by moving unspent transaction outputs outsidethe in-memory transaction databases. We present the theoretical analysis on theoptimization method to validate the effectiveness. Extensive experiments showour proposed method outperforms the current mechanism for the blockchaintransaction databases.
基金Projects(61003075, 61170261) supported by the National Natural Science Foundation of China
文摘Most transactional memory (TM) research focused on multi-core processors, and others investigated at the clusters, leaving the area of non-uniform memory access (NUMA) system unexplored. The existing TM implementations made significant performance degradation on NUMA system because they ignored the slower remote memory access. To solve this problem, a latency-based conflict detection and a forecasting-based conflict prevention method were proposed. Using these techniques, the NUMA aware TM system was presented. By reducing the remote memory access and the abort rate of transaction, the experiment results show that the NUMA aware strategies present good practical TM performance on NUMA system.
基金This work is supported by‘The Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201714)’‘Weihai Science and Technology Development Program(2016DXGJMS15)’‘Key Research and Development Program in Shandong Provincial(2017GGX90103)’.
文摘In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.
基金Project(61103046) supported in part by the National Natural Science Foundation of ChinaProject(B201312) supported by DHU Distinguished Young Professor Program,China+1 种基金Project(LY14F020007) supported by Zhejiang Provincial Natural Science Funds of ChinaProject(2014A610072) supported by the Natural Science Foundation of Ningbo City,China
文摘DNS(domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on Map Reduce. Different from the previous parallel clustering method, a two-stage Map Reduce implementation framework is proposed. Each of the stage is implemented by one kind Map Reduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE.
基金Supported by the National Natural Science Foundation of China(11371284)
文摘We study the dividend optimization problem for an insurance company under the consideration of internal competition between different units inside company and transaction costs when dividends occur. The management of the company controls the reinsurance rate, the timing and the amount of dividends paid out to maximize the expected total dividends paid out to the shareholders until ruin time. By solving the corresponding quasi-variational inequality, we obtain the optimal return function and the optimal strategy.
基金supported in part by the National Natural Science Foundation of China (62272078)the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-035A)the Doctoral Student Talent Training Program of Chongqing University of Posts and Telecommunications (BYJS202009)。
文摘Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.
文摘This paper deals with how to implement AMBA bus transaction level modeling in SystemC. There are two main techniques used in the whole modeling process, which consist of starting the platform modeling at the transaction level and using the uniformed modeling language— System C. According to the concepts of interface, port and hierarchical channel introduced in SystemC 2.0, the system of master-channel (AMBA bus) slave is created as the architecture of the AMBA bus transaction level model, which can make it more extendable. The port and interface classes of the model that are prone to program are defined in accordance with the SoC hierarchical design methodology. In addition, method calls, not signal communication, are used between different modules in the model, so the higher-level abstraction is achieved and the simulation performance is improved. The AMBA bus transaction level model is analyzed and certified by simulation experiment, and proved to be completely compliant to the AMBA specification 2.0. Key words AMBA - transaction level - SystemC - SoC CLC number TP 393 Foundation item: Supported by the National High Technology Development 863 Program of China (2002AA1Z1490)Biography: He Zhen (1979-), male, Master candidate, research direction: system level modeling in SoC hardware/software co-design.