Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
Background: Premature cervical softening and shortening may be considered an early mechanical failure that predispose to preterm birth. Purpose: This study aims to explore the applicability of an innovative cervical t...Background: Premature cervical softening and shortening may be considered an early mechanical failure that predispose to preterm birth. Purpose: This study aims to explore the applicability of an innovative cervical tactile ultrasound approach for predicting spontaneous preterm birth (sPTB). Materials and Methods: Eligible participants were women with low-risk singleton pregnancies in their second trimester, enrolled in this prospective observational study. A Cervix Monitor (CM) device was designed with a vaginal probe comprising four tactile sensors and a single ultrasound transducer operating at 5 MHz. The probe enabled the application of controllable pressure to the external cervical surface, facilitating the acquisition of stress-strain data from both anterior and posterior cervical sectors. Gestational age at delivery was recorded and compared against cervical elasticity. Results: CM examination data were analyzed for 127 women at 24<sup>0/7</sup> - 28<sup>6/7</sup> gestational weeks. sPTB was observed in 6.3% of the cases. The preterm group exhibited a lower average cervical stress-to-strain ratio (elasticity) of 0.70 ± 0.26 kPa/mm compared to the term group’s 1.63 ± 0.65 kPa/mm with a p-value of 1.1 × 10<sup>−</sup><sup>4</sup>. Diagnostic accuracy for predicting spontaneous preterm birth based solely on cervical elasticity data was found to be 95.0% (95% CI, 88.5 - 100.0). Conclusion: These findings suggest that measuring cervical elasticity with the designed tactile ultrasound probe has the potential to predict spontaneous preterm birth in a cost-effective manner.展开更多
Tactile paving is a professional road facility to ensure the safe travel of people with visual impairment.However,there are many problems with tactile paving travel in practice.For one,some tactile paving is seriously...Tactile paving is a professional road facility to ensure the safe travel of people with visual impairment.However,there are many problems with tactile paving travel in practice.For one,some tactile paving is seriously damaged,and the other is the accumulation of obstacles.How to help visually impaired people recognize and locate obstacles in tactile paving is a problem worth studying.In this paper,image recognition technology is used to recognize the tactile paving pictures with obstacles,and an attention mechanism is used to optimize samples to improve recognition accuracy.展开更多
We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove con...We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove confusing factors such as maternal disturbance. Pups of the non-tactile stimulation (NTS) group did not receive any handling. Pups subjected to the TS treatment were handled and marked for approximately 30 s daily from postnatal days (PND) 2 - 9 or from PND 10 - 17. Pups subjected to the MS treatment were handled and marked in the same way as the TS pups and then individually placed in a cup with familiar nest bedding for 1 h daily. At the age of 3 months, female rats with different neonatal experiences were employed in the light/dark box test and the one-trial passive avoidance response. Both PND 2 - 9 TS and PND 10 - 17 TS groups exhibited more time spent in the illuminated chamber of the light/dark box, and longer step-through latencies in the passive avoidance response when compared to the NTS group, indicating that early life TS treatment reduced novelty-induced anxious emotion and facilitated the retention of emotional memory in adult female rats. No significant effects were found on any behavioral measures between the MS groups and the TS groups, suggesting that neonatal short-time MS treatment was not intensive enough to alter the emotional behaviors, at least in female rats. Infantile age was not an effective factor for these measures. This result supports the hypothesis that neonatal tactile stimulation and maternal separation lead to different effects on the neural development of postnatal pups.展开更多
Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- ...Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.展开更多
From the perspective of the tactile comfort of underwear fabrics, 179 kinds of underwear fabrics were selected to test tactile related performance indices using the fabric touch tester(FTT), and the relationship betwe...From the perspective of the tactile comfort of underwear fabrics, 179 kinds of underwear fabrics were selected to test tactile related performance indices using the fabric touch tester(FTT), and the relationship between physical indicators and tactile sensation of different fiber types of underwear fabrics was studied to establish a digital regression model by a stepwise regression method. The experimental results show that fabric fiber composition, compression characteristics, surface friction coefficient, surface roughness amplitude, bending characteristics, and maximum thermal conductivity significantly affect the level of tactile comfort of underwear fabrics, the composition of underwear fabrics has a significant effect on soft touch, and the clustering method and the grading method can effectively rate the level of tactile comfort of underwear fabrics.展开更多
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi...Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.展开更多
Objective To determine whether the convergences of tactile information also occur at thalamic ventroposterolateral nucleus in rats, we investigated the properties of tactile responses of the thalamic ventroposterolate...Objective To determine whether the convergences of tactile information also occur at thalamic ventroposterolateral nucleus in rats, we investigated the properties of tactile responses of the thalamic ventroposterolateral nucleus in rats. Methods Unit responses were recorded extracellularly from thalamic ventroposterolateral nucleus in anesthetized rats. Results Among 156 neurons examined, 140 neurons (89.7%) had the single, continual and small receptive fields, and 16 neurons (10.3%) had two discrete receptive fields. Some neurons exhibited different responses to the same intensity stimulation which delivered to different points in their receptive fields. In addition, 4.5% neurons (n -- 7) responded only to locomotive stimulation but not to a punctiform tactile stimulation. Conclusion The majority of neurons in ventroposterolateral nucleus of rats have the spatial, temporal and submodal characteristics of cutaneous receptors, while the minority of neurons exhibit the responses of interaction of different peripheral receptors. Therefore, it is con- cluded that there are convergences of tactile information at the ventroposterolateral nucleus of rats.展开更多
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn g...Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin.展开更多
Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping ob...Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.展开更多
Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard cont...Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc.展开更多
We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in whi...We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in which the sample is mounted. A sample of raw Longissimus dorsi (LD) muscle is placed in the measuring box; then a rod connected to the pressure sensor is pressed into the beef sample to a given depth; the reaction force of the beef sample is measured and used to predict the tenderness. Sensory evaluation and Warner-Bratzler Shear Force (WBSF) evaluation of samples from the same LD muscle are used for comparison. The new detection system agrees with established procedure 95% of the time, and the time to test a sample is less than 5 minutes.展开更多
In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is invest...In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is investigated to control the elderly-assistant & walking-assistant robot. First,on the basis of the proposed driving control system program of tactile and slip,a detection system of tactile and slip senses are designed. Based on the tactile and slip feature representation and extraction,an improved classification and recognition method is proposed which combines K-nearest neighbor (KNN) algorithm and K-means algorithm. And then,a robot control system based on TMS320F2812 is designed in this paper,including its hardware and software design. Then,a moving control method including the fuzzy adaptive control algorithm is presented for the walking-assistant robot to realize some different moving properties. At last,by the experimental verification in the walking-assistant robot,the research results show that the tactile and slip senses detection and recognition method is effective,and the whole control system has good feasibility and adaptability.展开更多
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ...In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.展开更多
<strong>Introduction:</strong><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The true etiology of pelvic organ p...<strong>Introduction:</strong><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The true etiology of pelvic organ prolapse and urinary incontinence and variations observed among individuals are not entirely understood. Tactile (stress) and ultrasound (anatomy, strain) image fusion may furnish new insights into the female pelvic floor conditions. This study aimed to explore imaging performance and clinical value of vaginal tactile and ultrasound image fusion for characterization of the female pelvic floor. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A novel probe with 96 tactile and 192 ultrasound transducers was designed. Women scheduled for a urogynecological visit were considered eligible for enrollment to observational study. Intravaginal tactile and ultrasound images were acquired for vaginal wall deformations at probe insertion, elevation, rotation, Valsalva maneuver, voluntary contractions, involuntary relaxation, and reflex pelvic muscle contractions. Biomechanical mapping has included tactile/ultrasound imaging and functional imaging. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> Twenty women were successfully studied with the probe. Tactile and ultrasound images for tissues deformation as well as functional images were recorded. Tactile (stress) and ultrasound (strain) images allowed creation of stress-strain maps for the tissues of interest in absolute scale. Functional images allowed identification of active pelvic structures and their biomechanical characterization (anatomical measurements, contractive mobility and strength). Fusion of the modalities has allowed recognition and characterization of levator ani muscles (pubococcygeal, puborectal, iliococcygeal), perineum, urethral and anorectal complexes critical in prolapse and/or incontinence development. </span><b><span style="font-family:Verdana;">Conclusions:</span></b><span style="font-family:Verdana;"> Vaginal tactile and ultrasound image fusion provides unique data for biomechanical characterization of the female pelvic floor. Bringing novel biomechanical characterization for critical soft tissues/structures may provide extended scientific knowledge and improve clinical practice.</span></span></span></span>展开更多
Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner...Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved.展开更多
The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging...The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.展开更多
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
文摘Background: Premature cervical softening and shortening may be considered an early mechanical failure that predispose to preterm birth. Purpose: This study aims to explore the applicability of an innovative cervical tactile ultrasound approach for predicting spontaneous preterm birth (sPTB). Materials and Methods: Eligible participants were women with low-risk singleton pregnancies in their second trimester, enrolled in this prospective observational study. A Cervix Monitor (CM) device was designed with a vaginal probe comprising four tactile sensors and a single ultrasound transducer operating at 5 MHz. The probe enabled the application of controllable pressure to the external cervical surface, facilitating the acquisition of stress-strain data from both anterior and posterior cervical sectors. Gestational age at delivery was recorded and compared against cervical elasticity. Results: CM examination data were analyzed for 127 women at 24<sup>0/7</sup> - 28<sup>6/7</sup> gestational weeks. sPTB was observed in 6.3% of the cases. The preterm group exhibited a lower average cervical stress-to-strain ratio (elasticity) of 0.70 ± 0.26 kPa/mm compared to the term group’s 1.63 ± 0.65 kPa/mm with a p-value of 1.1 × 10<sup>−</sup><sup>4</sup>. Diagnostic accuracy for predicting spontaneous preterm birth based solely on cervical elasticity data was found to be 95.0% (95% CI, 88.5 - 100.0). Conclusion: These findings suggest that measuring cervical elasticity with the designed tactile ultrasound probe has the potential to predict spontaneous preterm birth in a cost-effective manner.
基金supported by the Jiangsu Province College Student Innovation Training Program(Project No.20221127684Y)the Talent Startup project of Nanjing Institute of Technology(Project No.YKJ202117)。
文摘Tactile paving is a professional road facility to ensure the safe travel of people with visual impairment.However,there are many problems with tactile paving travel in practice.For one,some tactile paving is seriously damaged,and the other is the accumulation of obstacles.How to help visually impaired people recognize and locate obstacles in tactile paving is a problem worth studying.In this paper,image recognition technology is used to recognize the tactile paving pictures with obstacles,and an attention mechanism is used to optimize samples to improve recognition accuracy.
文摘We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove confusing factors such as maternal disturbance. Pups of the non-tactile stimulation (NTS) group did not receive any handling. Pups subjected to the TS treatment were handled and marked for approximately 30 s daily from postnatal days (PND) 2 - 9 or from PND 10 - 17. Pups subjected to the MS treatment were handled and marked in the same way as the TS pups and then individually placed in a cup with familiar nest bedding for 1 h daily. At the age of 3 months, female rats with different neonatal experiences were employed in the light/dark box test and the one-trial passive avoidance response. Both PND 2 - 9 TS and PND 10 - 17 TS groups exhibited more time spent in the illuminated chamber of the light/dark box, and longer step-through latencies in the passive avoidance response when compared to the NTS group, indicating that early life TS treatment reduced novelty-induced anxious emotion and facilitated the retention of emotional memory in adult female rats. No significant effects were found on any behavioral measures between the MS groups and the TS groups, suggesting that neonatal short-time MS treatment was not intensive enough to alter the emotional behaviors, at least in female rats. Infantile age was not an effective factor for these measures. This result supports the hypothesis that neonatal tactile stimulation and maternal separation lead to different effects on the neural development of postnatal pups.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2009AA01Z314,2009AA01Z311)the Jiangsu Province Natural Science Foundation(BK2009272)theJiangsu Province″333″Program~~
文摘Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.
基金2021 Graduate Research Innovation Project of BIFT,China (No.X2021-020)。
文摘From the perspective of the tactile comfort of underwear fabrics, 179 kinds of underwear fabrics were selected to test tactile related performance indices using the fabric touch tester(FTT), and the relationship between physical indicators and tactile sensation of different fiber types of underwear fabrics was studied to establish a digital regression model by a stepwise regression method. The experimental results show that fabric fiber composition, compression characteristics, surface friction coefficient, surface roughness amplitude, bending characteristics, and maximum thermal conductivity significantly affect the level of tactile comfort of underwear fabrics, the composition of underwear fabrics has a significant effect on soft touch, and the clustering method and the grading method can effectively rate the level of tactile comfort of underwear fabrics.
基金funding from National Natural Science Foundation of China(NSFC Nos.61774157,81771388,61874121,and 61874012)Beijing Natural Science Foundation(No.4182075)the Capital Science and Technology Conditions Platform Project(Project ID:Z181100009518014).
文摘Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.
文摘Objective To determine whether the convergences of tactile information also occur at thalamic ventroposterolateral nucleus in rats, we investigated the properties of tactile responses of the thalamic ventroposterolateral nucleus in rats. Methods Unit responses were recorded extracellularly from thalamic ventroposterolateral nucleus in anesthetized rats. Results Among 156 neurons examined, 140 neurons (89.7%) had the single, continual and small receptive fields, and 16 neurons (10.3%) had two discrete receptive fields. Some neurons exhibited different responses to the same intensity stimulation which delivered to different points in their receptive fields. In addition, 4.5% neurons (n -- 7) responded only to locomotive stimulation but not to a punctiform tactile stimulation. Conclusion The majority of neurons in ventroposterolateral nucleus of rats have the spatial, temporal and submodal characteristics of cutaneous receptors, while the minority of neurons exhibit the responses of interaction of different peripheral receptors. Therefore, it is con- cluded that there are convergences of tactile information at the ventroposterolateral nucleus of rats.
基金supported by the National Key Research and Development Program of China(2017YFB0405400)National Natural Science Foundation of China(51732007)+1 种基金Major Innovation Projects in Shandong Province(2018YFJH0503)Natural Science Foundation of Shandong Province(ZR2018BEM010).
文摘Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin.
文摘Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.
基金Open access funding provided by Shanghai Jiao Tong University。
文摘Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc.
基金supported by the Key Project of Science and Technology Foundations of Jilin Province of China (Grant No.20060217)the Research Foundation for the Talents by the People's Government of Jilin Province
文摘We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in which the sample is mounted. A sample of raw Longissimus dorsi (LD) muscle is placed in the measuring box; then a rod connected to the pressure sensor is pressed into the beef sample to a given depth; the reaction force of the beef sample is measured and used to predict the tenderness. Sensory evaluation and Warner-Bratzler Shear Force (WBSF) evaluation of samples from the same LD muscle are used for comparison. The new detection system agrees with established procedure 95% of the time, and the time to test a sample is less than 5 minutes.
基金State Key Laboratory of Robotics and System(HIT) in China(No.SKLRS-2009-MS-02)
文摘In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is investigated to control the elderly-assistant & walking-assistant robot. First,on the basis of the proposed driving control system program of tactile and slip,a detection system of tactile and slip senses are designed. Based on the tactile and slip feature representation and extraction,an improved classification and recognition method is proposed which combines K-nearest neighbor (KNN) algorithm and K-means algorithm. And then,a robot control system based on TMS320F2812 is designed in this paper,including its hardware and software design. Then,a moving control method including the fuzzy adaptive control algorithm is presented for the walking-assistant robot to realize some different moving properties. At last,by the experimental verification in the walking-assistant robot,the research results show that the tactile and slip senses detection and recognition method is effective,and the whole control system has good feasibility and adaptability.
文摘In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.
文摘<strong>Introduction:</strong><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The true etiology of pelvic organ prolapse and urinary incontinence and variations observed among individuals are not entirely understood. Tactile (stress) and ultrasound (anatomy, strain) image fusion may furnish new insights into the female pelvic floor conditions. This study aimed to explore imaging performance and clinical value of vaginal tactile and ultrasound image fusion for characterization of the female pelvic floor. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A novel probe with 96 tactile and 192 ultrasound transducers was designed. Women scheduled for a urogynecological visit were considered eligible for enrollment to observational study. Intravaginal tactile and ultrasound images were acquired for vaginal wall deformations at probe insertion, elevation, rotation, Valsalva maneuver, voluntary contractions, involuntary relaxation, and reflex pelvic muscle contractions. Biomechanical mapping has included tactile/ultrasound imaging and functional imaging. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> Twenty women were successfully studied with the probe. Tactile and ultrasound images for tissues deformation as well as functional images were recorded. Tactile (stress) and ultrasound (strain) images allowed creation of stress-strain maps for the tissues of interest in absolute scale. Functional images allowed identification of active pelvic structures and their biomechanical characterization (anatomical measurements, contractive mobility and strength). Fusion of the modalities has allowed recognition and characterization of levator ani muscles (pubococcygeal, puborectal, iliococcygeal), perineum, urethral and anorectal complexes critical in prolapse and/or incontinence development. </span><b><span style="font-family:Verdana;">Conclusions:</span></b><span style="font-family:Verdana;"> Vaginal tactile and ultrasound image fusion provides unique data for biomechanical characterization of the female pelvic floor. Bringing novel biomechanical characterization for critical soft tissues/structures may provide extended scientific knowledge and improve clinical practice.</span></span></span></span>
文摘Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved.
文摘The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.