期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure
1
作者 Zhenyu Zhang Quan Jin +4 位作者 Haitao Zhang Zhao Liu Yuyang Wu Longfei Zhang Renzhang Yan 《Structural Durability & Health Monitoring》 EI 2025年第1期55-75,共21页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simulation technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placement first and then prestress-tensioning is proposed. 展开更多
关键词 Concrete panels freeze-thaw damage compression-shear crack tension-shear crack
下载PDF
Fracture mechanics solution of confined water progressive intrusion height of mining fracture floor 被引量:2
2
作者 Lu Haifeng Yao Duoxi +1 位作者 Shen Dan Cao Jiyang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期99-106,共8页
In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, ... In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac- ture under the same conditions. When floor fracture dip angle is less than 90% tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90% it occurs more easily on the right edge of the goal. The longer the advancing distance of working face is, the greater initial frac- ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result. 展开更多
关键词 tension-shearing fractureCompression-shearing fractureConfined water progressive intrusionFloor water invasion
下载PDF
Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt(RCB)composite system 被引量:9
3
作者 Genshui Wu Weijian Yu +1 位作者 Jianping Zuo Shaohua Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期759-768,共10页
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur... For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early. 展开更多
关键词 Thin coal seam Coal and rock roadway BOLT tension-shear failure “Rock-coal-bolt”composite system
下载PDF
EFFECTIVE ELASTIC MODULUS OF BONE-LIKE HIERARCHICAL MATERIALS 被引量:2
4
作者 Zuo Shuchun Wei Yueguang 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第3期198-205,共8页
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is com... A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis. 展开更多
关键词 hierarchical materials tension-shear chain model shear-lag model
下载PDF
Mathematical modelling of axonal microtubule bundles under dynamic torsion
5
作者 J.Y.WU Hong YUAN L.Y.LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期829-844,共16页
Owing to its viscoelastic nature, axon exhibits a stress rate-dependent me- chanical behavior. An extended tension-shear chain model with Kelvin-Voigt viscoelas- ticity is developed to illustrate the micromechanical b... Owing to its viscoelastic nature, axon exhibits a stress rate-dependent me- chanical behavior. An extended tension-shear chain model with Kelvin-Voigt viscoelas- ticity is developed to illustrate the micromechanical behavior of the axon under dynamic torsional conditions. Theoretical closed-form expressions are derived to predict the de- formation, stress transfer, and failure mechanism between microtubule (MT) and tau protein while the axon is sheared dynamically. The results obtained from the present an- alytical solutions demonstrate how the MT-tau interface length, spacing between the tau proteins, and loading rate affect the mechanical properties of axon. Moreover, it is found that the MTs are more prone to rupture due to the contributions from the viscoelastic effects. Under the torsional force, the MTs are so long that the stress concentrates at the loaded end where axonal MTs will break. This MT-tau protein dynamics model can help to understand the underlying pathology and molecular mechanisms of axonal injury. Additionally, the emphasis of this paper is on the micromechanical behavior of axon, whereas this theoretical model can be equally applicable to other soft or hard tissues, owning the similar fibrous structure. 展开更多
关键词 TORSION BIOCOMPOSITE diffuse axonal injury (DAI) Kelvin-Voigt viscoelas-tic model dynamic response tension-shear chain model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部