Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δ...Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δnc f(z) satisfy E(1;f)= E(1;Δnc f), E(0;f) E(0;Δnc f) and E(1;f) E(1;Δnc f), then Δnc f(z) f(z). This result improves a more recent theorem due to Gao et al.(Gao Z, Kornonen R, Zhang J, Zhang Y. Uniqueness of meromorphic functions sharing values with their nth order exact differences. Analysis Math., 2018, https://doi.org/10.1007/s10476- 018-0605-2) by using a simple method.展开更多
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and ...In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.展开更多
In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel...In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel's directions are same.展开更多
We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods...We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.展开更多
This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result...This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.展开更多
The human society is an interdependent community of shared future.Rooted in the foundation of “Great Harmony” ideology in Chinese traditional culture,the idea of “a community of shared future for mankind” is an im...The human society is an interdependent community of shared future.Rooted in the foundation of “Great Harmony” ideology in Chinese traditional culture,the idea of “a community of shared future for mankind” is an important part of the socialism thoughts with Chinese characteristics in new era.The similarities and differences of cultures are the base of complementation and premise of innovative development rather than the source of conflicts.The core value of community of shared future is harmony,which with the goal of win-win can be achieved only by actively advocating cultural diversity,strengthening the effective and equal dialogue and understanding and complementing between different cultures or civilizations,and creating an inclusive,tolerant and reasonable peaceful environment.In this respect,the comparative literature research should inevitably play its irreplaceable role as a bridge to enable the communication,dialogue and understanding between eastern and western literature and cultures.The communication between cultures is homogeneous but the interaction between cultural soils as well as national cultures is heterogeneous.During the communication process of literature works,it’s necessary to further study the literature content under cultural differences.The community of shared future for mankind is not only a new idea for global governance but also a new kind of expression of the habitat guarding and building awareness;it is the real and physically objective existence and also the imaginary and emotional spirit pursuit.In the context that the comparative literature is trying to develop into the world literature,it’s the mission for mankind to make it possible the wide transmission,reading and studying of the diversified and unique literature works of different countries,which can manifest the common value connotation of human beings,and to spare no effort to remove obstacles from the path to the destination of a community of shared future for mankind.展开更多
We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for s...We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.展开更多
In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one...In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.展开更多
In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively...In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.展开更多
In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R ...In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.展开更多
For a family of meromorphic functions on a domain D, it is discussed whether F is normal on D if for every pair functions f(z),g∈F , f'–afnand g'–agn share value d on D when n=2,3, where a, b are two comple...For a family of meromorphic functions on a domain D, it is discussed whether F is normal on D if for every pair functions f(z),g∈F , f'–afnand g'–agn share value d on D when n=2,3, where a, b are two complex numbers, a≠0,∞,b≠∞.Finally, the following result is obtained:Let F be a family of meromorphic functions in D, all of whose poles have multiplicity at least 4 , all of whose zeros have multiplicity at least 2. Suppose that there exist two functions a(z) not idendtically equal to zero, d(z) analytic in D, such that for each pair of functions f and in F , f'–a(z)f2 and g'–a(z)g2 share the function d(z) . If a(z) has only a multiple zeros and f(z)≠∞ whenever a(z)=0 , then F is normal in D.展开更多
This paper sets out a new paradigm of faith based organisation(FBO)called Curating Spaces of Hope.The paper sets out the paradigm and the interdisciplinary literatures into which the paradigm is applied namely,the div...This paper sets out a new paradigm of faith based organisation(FBO)called Curating Spaces of Hope.The paper sets out the paradigm and the interdisciplinary literatures into which the paradigm is applied namely,the diversifying belief landscape in the UK,the postsecular,the redefinition of FBOs,and liminality as the new norm in policy.The paper then turns to ethnographic research to evidence the ability of the paradigm to map and coproduce shared values,before considering applications of Curating Spaces of Hope in post-pandemic contexts in the north west of England through case studies with ecumenical Christian,non-religious,and Turkish Muslim and interfaith contexts.展开更多
In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of B...In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of Bruck's conjecture, that is, if △f(z) = f(z + η) - f(z) and f(z) share one value a (≠α) CM, where η ∈ C is a constant such that f(z +η) ≠ f(z),then△f(z)-a/f(z)-a=a/a-α.展开更多
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical...In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical. As a consequence, a result due to W. W. Adams and E. G. Straus is generalized.展开更多
Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef...Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.展开更多
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
基金The NSF (11801291) of China,the NSF (2018J01424) of Fujian Province
文摘Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δnc f(z) satisfy E(1;f)= E(1;Δnc f), E(0;f) E(0;Δnc f) and E(1;f) E(1;Δnc f), then Δnc f(z) f(z). This result improves a more recent theorem due to Gao et al.(Gao Z, Kornonen R, Zhang J, Zhang Y. Uniqueness of meromorphic functions sharing values with their nth order exact differences. Analysis Math., 2018, https://doi.org/10.1007/s10476- 018-0605-2) by using a simple method.
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金supported by NSF of China (11209119511171119+1 种基金11101096)the STP of Education Department of Jiangxi Province,China (GJJ12179)
文摘In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.
基金supported by the National Natural Science Foundation of China(11171013)
文摘In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel's directions are same.
文摘We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.
文摘This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.
基金funded by 2012 Shandong University Independent Innovation (Humanity and Social Science Special Program) Project “Study of British Immigrant Writer Caryl Philips”(IFW12018)
文摘The human society is an interdependent community of shared future.Rooted in the foundation of “Great Harmony” ideology in Chinese traditional culture,the idea of “a community of shared future for mankind” is an important part of the socialism thoughts with Chinese characteristics in new era.The similarities and differences of cultures are the base of complementation and premise of innovative development rather than the source of conflicts.The core value of community of shared future is harmony,which with the goal of win-win can be achieved only by actively advocating cultural diversity,strengthening the effective and equal dialogue and understanding and complementing between different cultures or civilizations,and creating an inclusive,tolerant and reasonable peaceful environment.In this respect,the comparative literature research should inevitably play its irreplaceable role as a bridge to enable the communication,dialogue and understanding between eastern and western literature and cultures.The communication between cultures is homogeneous but the interaction between cultural soils as well as national cultures is heterogeneous.During the communication process of literature works,it’s necessary to further study the literature content under cultural differences.The community of shared future for mankind is not only a new idea for global governance but also a new kind of expression of the habitat guarding and building awareness;it is the real and physically objective existence and also the imaginary and emotional spirit pursuit.In the context that the comparative literature is trying to develop into the world literature,it’s the mission for mankind to make it possible the wide transmission,reading and studying of the diversified and unique literature works of different countries,which can manifest the common value connotation of human beings,and to spare no effort to remove obstacles from the path to the destination of a community of shared future for mankind.
基金The NSF(11301076)of Chinathe NSF(2014J01004,2018J01658)of Fujian Province of China
文摘We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.
基金The NSF(11301076)of Chinathe NSF(2014J01004)of Fujian Province
文摘In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.
基金Supported by the National Natural Science Foundation of China(11661044)
文摘In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.
文摘In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.
文摘For a family of meromorphic functions on a domain D, it is discussed whether F is normal on D if for every pair functions f(z),g∈F , f'–afnand g'–agn share value d on D when n=2,3, where a, b are two complex numbers, a≠0,∞,b≠∞.Finally, the following result is obtained:Let F be a family of meromorphic functions in D, all of whose poles have multiplicity at least 4 , all of whose zeros have multiplicity at least 2. Suppose that there exist two functions a(z) not idendtically equal to zero, d(z) analytic in D, such that for each pair of functions f and in F , f'–a(z)f2 and g'–a(z)g2 share the function d(z) . If a(z) has only a multiple zeros and f(z)≠∞ whenever a(z)=0 , then F is normal in D.
文摘This paper sets out a new paradigm of faith based organisation(FBO)called Curating Spaces of Hope.The paper sets out the paradigm and the interdisciplinary literatures into which the paradigm is applied namely,the diversifying belief landscape in the UK,the postsecular,the redefinition of FBOs,and liminality as the new norm in policy.The paper then turns to ethnographic research to evidence the ability of the paradigm to map and coproduce shared values,before considering applications of Curating Spaces of Hope in post-pandemic contexts in the north west of England through case studies with ecumenical Christian,non-religious,and Turkish Muslim and interfaith contexts.
基金supported by the National Natural Science Foundation of China(11171119)
文摘In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of Bruck's conjecture, that is, if △f(z) = f(z + η) - f(z) and f(z) share one value a (≠α) CM, where η ∈ C is a constant such that f(z +η) ≠ f(z),then△f(z)-a/f(z)-a=a/a-α.
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).
文摘In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical. As a consequence, a result due to W. W. Adams and E. G. Straus is generalized.
文摘Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.