Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in ...Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.展开更多
This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitut...This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one,in which the parameters all are determined in terms of the material and geometric ones of the spheres,and the behaviors of perfect elastic,inelastic,and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is specified in the region of 0 ≤ ε ≤ 1.After an empirical formula of the coefficient of restitution dependent on the impact velocity is suggested to fit the existing experimental measurements by means of the least square method,the predictions of the dependency and the collision duration are in well quantitative agreement with their experimental measurements.It is found that the measurable quantities are dependent on both the impact velocity and the parameters of spheres.Following this model,finally,an approach to determine the spring coefficient in the linear viscoelastic model of the collision is also displayed.These results obtained here will be significantly beneficial for the applications where a collision model is requested in the simulations of relevant grain flows and impact dynamics etc..展开更多
Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is ...Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is mainly described as two-stage process: Ⅰ The interfacial cavity with shape change from diamond to cylinder.Ⅱ The radius of the cylindrical cavity are reduced and eliminated gradually. A new theoretical model is established for the process of transformation superplastic diffusion bonding (TSDB) on the basis of a theoretical model for isothermal superplastic diffusion. The model can predict the bonding quality which is affected by technological parameters, such as limit cycling temperature, the compressive stress, the numbers of thermal cycles and temperature cycling through the phase transformation in the thermal cycling and so on. Results show that the maximum temperature, the compressive stress, the numbers of thermal cycles and the rate of temperature changing speed in the thermal cycling have an important influence on TSDB process. Meanwhile, reasonable technological parameters chosen from theoretical analysis is in good agreement with those obtained from experimental results.展开更多
The current design and optimization of the occupant restraint system(ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design...The current design and optimization of the occupant restraint system(ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.展开更多
As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been co...As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.展开更多
To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical p...To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.展开更多
The Value of the World's Ecosystem Services and Natural Capital by Costanza in 1997 is generally regarded as a monumem for the research of valuing ecosystem services. However, the classification of ecosystem services...The Value of the World's Ecosystem Services and Natural Capital by Costanza in 1997 is generally regarded as a monumem for the research of valuing ecosystem services. However, the classification of ecosystem services, the method of various services summation and the purpose for static global value had be confronted by many criticisms. Based on the summary of these criticisms, suggestions, related function assessment and further study direction, the sustainability of ecosystem Services is presented. The two basic indicators in ecology, productivity and biodiversity, respectively charactering the ability of producing and self-organizing, not only represent the internal function of ecosystem, but also are proportioned to its external function of supporting and providing for human life. On presenting the general.form of ecosystem services assessment, this paper improves the mathematical formula by giving a function adjusting coefficient composea of productivity and biodiversity. Theoretically, the integration of the two indicators reflects the changes of ecosystem services at spatial and temporal scales, can physically assess the sustainability of ecosystem services, and build a firm scientific fundament of value assessment for ecosystem services. Objectively, its application should be strictly tested in next step.展开更多
In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into sm...In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave struc- ture (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other.展开更多
A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease...A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease of grain size, namely, the starting temperature of θ (Al2Cu) precipitation in a nanogranular A1-Cu film will markedly lower than that of conventional coarse grain alloy with the same Cu concentration, and the precipitation temperatures calculated are comparable with the experimental ones. The theoretical model can be simply used to calculate the starting temperature of precipitation in A1-Cu films under three states: ① films with substrate; ②films without substrate; ③ultrafine grain bulk alloy. As a result, the model is universal, moreover, can be, in principle, used to predict precipitation temperature in other systems.展开更多
A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetr...A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.展开更多
In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed fo...In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed for the durability design in ocean engineering in northern China were confirmed.Based on a modified theoretical model of chloride diffusion and the reliability theory,the service lives of concrete structures exposed to the splash,tidal,and underwater zones were calculated.Mixed concrete proportions meeting the requirement of a service life of 100 or 120 years were designed,and a cover thickness requirement was proposed.In addition,the effects of the different time-varying relationships of the boundary condition(Cs)and diffusion coefficient(Df)on the service life were compared;the results showed that the time-varying relationships used in this study(i.e.,Cscontinuously increased and then remained stable,and Dfcontinuously decreased and then remained stable)were beneficial for the durability design of concrete structures in marine environment.展开更多
The limitation of the random walk theory of energy transfer between rare earth ions in crystals published in literatures is pointed out in this paper. A modified model, which can be used in any level of rare earth ion...The limitation of the random walk theory of energy transfer between rare earth ions in crystals published in literatures is pointed out in this paper. A modified model, which can be used in any level of rare earth ion concentration when the interaction between donor and acceptor is different from that between donors, is introduced. measured fluorescence lifetimes of Yb^3+:YAl3(BO3)4 This model has been applied to analyze the with a series of Yb^3+ concentrations.展开更多
The photometric characteristics of high-power white light-emitting diode (LED) devices are investigated. A theoretical model for the luminous efficacy o[ high-power white LED devices and LED systems is proposed. Wit...The photometric characteristics of high-power white light-emitting diode (LED) devices are investigated. A theoretical model for the luminous efficacy o[ high-power white LED devices and LED systems is proposed. With the proposed theoretical model, the mechanism of the luminous efficacy decrease is explained. Meanwhile, the model can be used to estimate the luminous efficacy oF LEDs under general operation conditions, such as different operation temperatures and injection currents. The wide validity of the luminous efficacy model is experimentally verified through the measurements of different types of LEDs. The experimental results demonstrate a high estimation accuracy. The proposed models not only can be applied to estimate the LED photometric performance, but also is helpful for reliability research of LEDs.展开更多
With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological...With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological(S&T)achievements,this study establishes a theoretical model of transformation factors of S&T achievements under the Belt and Road Initiative.Combined with the data analysis from questionnaire,it is found that in S&T achievements transformation process,there is a significant positive correlation between the innovation factors and the transfer factors,between the transfer factors and the diffusion factors,and between the diffusion factors and the transformation results.These conclusions provide reference for the subsequent S&T achievements transformation activities under the Belt and Road Initiative.Therefore,in the process of promoting the transformation of S&T achievements under the Belt and Road Initiative in the future,innovation factors such as information innovation,service innovation,and cooperative innovation should be fully reflected.Relevant agencies should take the transfer factors of S&T achievements as guidance;promote and apply the results of incubation through diffusion media and diffusion channels.展开更多
Diverse concepts of space developed in history of natural philosophy,mathematics,physics,and other natural or cultural studies form theoretical models of spatial relations,given in human’s experience.Their diversity ...Diverse concepts of space developed in history of natural philosophy,mathematics,physics,and other natural or cultural studies form theoretical models of spatial relations,given in human’s experience.Their diversity is due not only to the multiplicity of philosophical and methodological approaches to the concept of space,but also to the variety of ways,in which spatial relationships can be organized.This variety gives a possibility to distinct autonomous spaces of different types with diverse sets of properties as well as separate spaces with their own ordinal,metrical,and sequential structures.Particularly,various ways of space semiotization in culture generate different types of autonomous and separate spaces:written texts,maps,pictures,chessboards,etc.In the same time,all particular notions of space are included in a general logical class.Its volume and content are covered by the philosophical category of space.Such general category cannot be reduced to mathematical,physical,or other concepts of space elaborated in particular sciences,however,it serves as a philosophical basis for their comparison.展开更多
Companies that not only abide by environmental regulations, but also discover new techniques and adopt newmanagement methods to reduce negative environmental impacts often have positive effects on corporate profitabil...Companies that not only abide by environmental regulations, but also discover new techniques and adopt newmanagement methods to reduce negative environmental impacts often have positive effects on corporate profitability. Inorder to meet the needs of sustainability of enterprises and protect environment, the concept of green management isdeveloped and regarded as an important direction of management theory of the 21st century. Though there are manytheories and practices about green management in western countries, they are built based on the developed marketeconomy, which are not suitable for Chinese enterprises absolutely. By analyzing the viewpoints and models of theoverseas and domestic experts and scholars, combining characteristic of China’s market economy, this paper points outthe real connotation of enterprise green management - the combination of ecological harmony (harmony between humanand nature) with human harmony (harmony among people), establishes a 3D theoretical model, points out the defects ofenterprise’s green management in China, reanalyzes and redesigned enterprise green management, which paves the wayfor the deeper and broader development of green management.展开更多
The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for ...The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.展开更多
Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston ...Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston pumps for high power density, safety, and reliability. The lubricating interfaces in axial piston machines are the key design issue that greatly determines the pump performance and service life. The cylinder block/valve plate interface is one of these critical lubricating interfaces and has received considerable attention from many researchers in the last half century. This study aims to review the state-of-the-art literature on the cylinder block/valve plate interface comprehensively and systematically. First, we introduce various theoretical models developed to investigate the lubrication behaviors of the interface and compare them in terms of their assumptions and limitations. Second, the experimental studies on the cylinder block/valve plate interface are presented comprehensively, where the involved test rigs are divided into three types according to their fidelity levels and measurement functionality. Third, we summarize some typical approaches of structure optimization, surface shaping, and surface strengthening, which help improve the load-carrying and anti-wear capacities of the interface under severe operating conditions. Finally, the challenges and future trends of the cylinder block/valve plate interface research are discussed briefly.展开更多
Lithium–sulfur(Li–S)batteries have been considered as promising battery systems due to their huge advantages on theoretical energy density and rich resources.However,the shuttle effect and sluggish transformation of...Lithium–sulfur(Li–S)batteries have been considered as promising battery systems due to their huge advantages on theoretical energy density and rich resources.However,the shuttle effect and sluggish transformation of soluble lithium polysulfides(LiPSs)hinder the practical application of Li–S batteries.Tremendous sulfur host materials with unique catalytic activity have been exploited to inhibit the shuttle effect and accelerate LiPSs redox reactions,in which theoretical simulations have been widely adopted.This review aims to summarize the fundamentals and applications of theoretical models in sulfur cathodes.Concretely,the integration of theoretical models provides insights into the adsorption and conversion mechanisms of LiPSs and is further utilized in the smart design of catalysts for the exploitation of practical Li–S batteries.Finally,a perspective on the future combination of calculation technology and theoretical models is provided.展开更多
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
文摘Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.
基金supported by the Key Fund of the National Natural Science Foundation of China (11032006)
文摘This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one,in which the parameters all are determined in terms of the material and geometric ones of the spheres,and the behaviors of perfect elastic,inelastic,and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is specified in the region of 0 ≤ ε ≤ 1.After an empirical formula of the coefficient of restitution dependent on the impact velocity is suggested to fit the existing experimental measurements by means of the least square method,the predictions of the dependency and the collision duration are in well quantitative agreement with their experimental measurements.It is found that the measurable quantities are dependent on both the impact velocity and the parameters of spheres.Following this model,finally,an approach to determine the spring coefficient in the linear viscoelastic model of the collision is also displayed.These results obtained here will be significantly beneficial for the applications where a collision model is requested in the simulations of relevant grain flows and impact dynamics etc..
文摘Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is mainly described as two-stage process: Ⅰ The interfacial cavity with shape change from diamond to cylinder.Ⅱ The radius of the cylindrical cavity are reduced and eliminated gradually. A new theoretical model is established for the process of transformation superplastic diffusion bonding (TSDB) on the basis of a theoretical model for isothermal superplastic diffusion. The model can predict the bonding quality which is affected by technological parameters, such as limit cycling temperature, the compressive stress, the numbers of thermal cycles and temperature cycling through the phase transformation in the thermal cycling and so on. Results show that the maximum temperature, the compressive stress, the numbers of thermal cycles and the rate of temperature changing speed in the thermal cycling have an important influence on TSDB process. Meanwhile, reasonable technological parameters chosen from theoretical analysis is in good agreement with those obtained from experimental results.
基金Supported by National Natural Science Foundation of China(Grant No.51375203)Open Foundation of Zhejiang Province Key Laboratory of Automobile Safety of China(Grant No.LHY1308J00368)Changchun Municipal Science and Technology Planning Project of China(Grant No.12ZX79)
文摘The current design and optimization of the occupant restraint system(ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
基金This project was supported in part by the National Natural Science Foundation of ChinaFoundation of the SEdC of China for Returned Chinese Scholars from Abroad
文摘As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results.
基金funded by the National Natural Science Foundation of China(Grant Nos.31600453 and 31570547)Fundamental Research Funds for the Central Universities(Grant No.2572017EB02)Natural Science Foundation of Heilongjiang Province,China(Grant No.C201403)
文摘To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.
基金National Natural Sci-ence Foundation of China (Grant No. 30230090)
文摘The Value of the World's Ecosystem Services and Natural Capital by Costanza in 1997 is generally regarded as a monumem for the research of valuing ecosystem services. However, the classification of ecosystem services, the method of various services summation and the purpose for static global value had be confronted by many criticisms. Based on the summary of these criticisms, suggestions, related function assessment and further study direction, the sustainability of ecosystem Services is presented. The two basic indicators in ecology, productivity and biodiversity, respectively charactering the ability of producing and self-organizing, not only represent the internal function of ecosystem, but also are proportioned to its external function of supporting and providing for human life. On presenting the general.form of ecosystem services assessment, this paper improves the mathematical formula by giving a function adjusting coefficient composea of productivity and biodiversity. Theoretically, the integration of the two indicators reflects the changes of ecosystem services at spatial and temporal scales, can physically assess the sustainability of ecosystem services, and build a firm scientific fundament of value assessment for ecosystem services. Objectively, its application should be strictly tested in next step.
基金Project supported by the Innovative Research Foundation of China Academy of Engineering Physics(Grant No.426050502-2)
文摘In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave struc- ture (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other.
基金The National Natural Science Foundation of China (No 50471014)The Science and Technology Foundation of Shanghai (No0210nm017)
文摘A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease of grain size, namely, the starting temperature of θ (Al2Cu) precipitation in a nanogranular A1-Cu film will markedly lower than that of conventional coarse grain alloy with the same Cu concentration, and the precipitation temperatures calculated are comparable with the experimental ones. The theoretical model can be simply used to calculate the starting temperature of precipitation in A1-Cu films under three states: ① films with substrate; ②films without substrate; ③ultrafine grain bulk alloy. As a result, the model is universal, moreover, can be, in principle, used to predict precipitation temperature in other systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005,11574150 and 11564006
文摘A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.
基金financial support provided by the National Natural Science Foundation of China(51508272,11832013,51878350,and 51678304)。
文摘In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed for the durability design in ocean engineering in northern China were confirmed.Based on a modified theoretical model of chloride diffusion and the reliability theory,the service lives of concrete structures exposed to the splash,tidal,and underwater zones were calculated.Mixed concrete proportions meeting the requirement of a service life of 100 or 120 years were designed,and a cover thickness requirement was proposed.In addition,the effects of the different time-varying relationships of the boundary condition(Cs)and diffusion coefficient(Df)on the service life were compared;the results showed that the time-varying relationships used in this study(i.e.,Cscontinuously increased and then remained stable,and Dfcontinuously decreased and then remained stable)were beneficial for the durability design of concrete structures in marine environment.
基金the National Natural Science Foundation of China (Nos. 50590405)the Natural Science Foundation of Fujian Province (No. A0610031)
文摘The limitation of the random walk theory of energy transfer between rare earth ions in crystals published in literatures is pointed out in this paper. A modified model, which can be used in any level of rare earth ion concentration when the interaction between donor and acceptor is different from that between donors, is introduced. measured fluorescence lifetimes of Yb^3+:YAl3(BO3)4 This model has been applied to analyze the with a series of Yb^3+ concentrations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51307113 and 51407124the Natural Science Foundation of Jiangsu Province under Grant No BK20130307
文摘The photometric characteristics of high-power white light-emitting diode (LED) devices are investigated. A theoretical model for the luminous efficacy o[ high-power white LED devices and LED systems is proposed. With the proposed theoretical model, the mechanism of the luminous efficacy decrease is explained. Meanwhile, the model can be used to estimate the luminous efficacy oF LEDs under general operation conditions, such as different operation temperatures and injection currents. The wide validity of the luminous efficacy model is experimentally verified through the measurements of different types of LEDs. The experimental results demonstrate a high estimation accuracy. The proposed models not only can be applied to estimate the LED photometric performance, but also is helpful for reliability research of LEDs.
基金Shanghai Science and Technology Commission's 2019"Science and Technology Innovation Action Plan"Project Haiju the Belt and Road Innovation and Technology Incubation Platform,China(No.19640770200)Fundamental Research Funds for the Central Universities,ChinaShanghai Pujiang Program,China(No.2020PJC002)。
文摘With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological(S&T)achievements,this study establishes a theoretical model of transformation factors of S&T achievements under the Belt and Road Initiative.Combined with the data analysis from questionnaire,it is found that in S&T achievements transformation process,there is a significant positive correlation between the innovation factors and the transfer factors,between the transfer factors and the diffusion factors,and between the diffusion factors and the transformation results.These conclusions provide reference for the subsequent S&T achievements transformation activities under the Belt and Road Initiative.Therefore,in the process of promoting the transformation of S&T achievements under the Belt and Road Initiative in the future,innovation factors such as information innovation,service innovation,and cooperative innovation should be fully reflected.Relevant agencies should take the transfer factors of S&T achievements as guidance;promote and apply the results of incubation through diffusion media and diffusion channels.
文摘Diverse concepts of space developed in history of natural philosophy,mathematics,physics,and other natural or cultural studies form theoretical models of spatial relations,given in human’s experience.Their diversity is due not only to the multiplicity of philosophical and methodological approaches to the concept of space,but also to the variety of ways,in which spatial relationships can be organized.This variety gives a possibility to distinct autonomous spaces of different types with diverse sets of properties as well as separate spaces with their own ordinal,metrical,and sequential structures.Particularly,various ways of space semiotization in culture generate different types of autonomous and separate spaces:written texts,maps,pictures,chessboards,etc.In the same time,all particular notions of space are included in a general logical class.Its volume and content are covered by the philosophical category of space.Such general category cannot be reduced to mathematical,physical,or other concepts of space elaborated in particular sciences,however,it serves as a philosophical basis for their comparison.
文摘Companies that not only abide by environmental regulations, but also discover new techniques and adopt newmanagement methods to reduce negative environmental impacts often have positive effects on corporate profitability. Inorder to meet the needs of sustainability of enterprises and protect environment, the concept of green management isdeveloped and regarded as an important direction of management theory of the 21st century. Though there are manytheories and practices about green management in western countries, they are built based on the developed marketeconomy, which are not suitable for Chinese enterprises absolutely. By analyzing the viewpoints and models of theoverseas and domestic experts and scholars, combining characteristic of China’s market economy, this paper points outthe real connotation of enterprise green management - the combination of ecological harmony (harmony between humanand nature) with human harmony (harmony among people), establishes a 3D theoretical model, points out the defects ofenterprise’s green management in China, reanalyzes and redesigned enterprise green management, which paves the wayfor the deeper and broader development of green management.
基金supported by the National Natural Science Foundation of China(22008169,91834303)the Open Research Fund of State Key Laboratory of Multiphase Complex Systems(MPCS-2021-D-06).
文摘The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.
基金supported by Chinese Civil Aircraft Project [No. MJ-2017-S49]China National Postdoctoral Program for Innovative Talents [No. BX20200210]China Postdoctoral Science Foundation [No. 2019M660086]。
文摘Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston pumps for high power density, safety, and reliability. The lubricating interfaces in axial piston machines are the key design issue that greatly determines the pump performance and service life. The cylinder block/valve plate interface is one of these critical lubricating interfaces and has received considerable attention from many researchers in the last half century. This study aims to review the state-of-the-art literature on the cylinder block/valve plate interface comprehensively and systematically. First, we introduce various theoretical models developed to investigate the lubrication behaviors of the interface and compare them in terms of their assumptions and limitations. Second, the experimental studies on the cylinder block/valve plate interface are presented comprehensively, where the involved test rigs are divided into three types according to their fidelity levels and measurement functionality. Third, we summarize some typical approaches of structure optimization, surface shaping, and surface strengthening, which help improve the load-carrying and anti-wear capacities of the interface under severe operating conditions. Finally, the challenges and future trends of the cylinder block/valve plate interface research are discussed briefly.
基金Beijing Municipal Natural Science Foundation,Grant/Award Number:Z200011National Natural Science Foundation of China,Grant/Award Numbers:22109086,21825501Taian Municipal Technology Foundation,Grant/Award Number:2019GX049。
文摘Lithium–sulfur(Li–S)batteries have been considered as promising battery systems due to their huge advantages on theoretical energy density and rich resources.However,the shuttle effect and sluggish transformation of soluble lithium polysulfides(LiPSs)hinder the practical application of Li–S batteries.Tremendous sulfur host materials with unique catalytic activity have been exploited to inhibit the shuttle effect and accelerate LiPSs redox reactions,in which theoretical simulations have been widely adopted.This review aims to summarize the fundamentals and applications of theoretical models in sulfur cathodes.Concretely,the integration of theoretical models provides insights into the adsorption and conversion mechanisms of LiPSs and is further utilized in the smart design of catalysts for the exploitation of practical Li–S batteries.Finally,a perspective on the future combination of calculation technology and theoretical models is provided.