期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting 被引量:2
1
作者 Antonietta Rosella Farina Lucia Annamaria Cappabianca +2 位作者 Veronica Zelli Michela Sebastiano Andrew Reay Mackay 《World Journal of Stem Cells》 SCIE 2021年第7期685-736,共52页
Pediatric neuroblastomas(NBs)are heterogeneous,aggressive,therapy-resistant embryonal tumours that originate from cells of neural crest(NC)origin and in particular neuroblasts committed to the sympathoadrenal progenit... Pediatric neuroblastomas(NBs)are heterogeneous,aggressive,therapy-resistant embryonal tumours that originate from cells of neural crest(NC)origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage.Therapeutic resistance,post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell(CSC)-like subpopulations,which through their self-renewing capacity,intermittent and slow cell cycles,drug-resistant and reversibly adaptive plastic phenotypes,represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs.In this review,dedicated to NB CSCs and the prospects for their therapeutic eradication,we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction,specification,epithelial to mesenchymal transition and migratory behaviour,in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB.We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs,before providing a comprehensive review of the salient molecules,signalling pathways,mechanisms,tumour microenvironmental and therapeutic conditions involved in promoting,selecting and maintaining NB CSC subpopulations,and that underpin their therapy-resistant,self-renewing metastatic behaviour.Finally,we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance,post-therapeutic relapse and metastatic progression. 展开更多
关键词 Neural crest NEUROBLASTOMA Cancer stem cells Polyploid giant cancer cells molecular mechanisms therapeutic targeting Tumour microenvironment
下载PDF
CXC chemokines and chemokine receptors in gastric cancer: From basic findings towards therapeutic targeting 被引量:25
2
作者 Hyo Jin Lee Ik-Chan Song +2 位作者 Hwan-Jung Yun Deog-Yeon Jo Samyong Kim 《World Journal of Gastroenterology》 SCIE CAS 2014年第7期1681-1693,共13页
Gastric cancer is the fourth most common cancer,and the second-highest cause of cancer-related deaths worldwide.Despite extensive research to identify novel diagnostic and therapeutic agents,patients with advanced gas... Gastric cancer is the fourth most common cancer,and the second-highest cause of cancer-related deaths worldwide.Despite extensive research to identify novel diagnostic and therapeutic agents,patients with advanced gastric cancer suffer from a poor quality of life and poor prognosis,and treatment is dependent mainly on conventional cytotoxic chemotherapy.To improve the quality of life and survival of gastric cancer patients,a better understanding of the underlying molecular pathologies,and their application towards the development of novel targeted therapies,is urgently needed.Chemokines are a group of small proteins associated with cytoskeletal rearrangements,the directional migration of several cell types during development and physiology,and the host immune response via interactions with G-protein coupled receptors.There is also growing evidence to suggest that chemokines not only play a role in the immune system,but are also involved in the development and progression of tumors.In gastric cancer,CXC chemokines and chemokine receptors regulate the trafficking of cells in and out of the tumor microenvironment.CXC chemokines and their receptors can also directly influence tumorigenesis by modulating tumor transformation,survival,growth,invasion and metastasis,as well as indirectly by regulating angiogenesis,and tumor-leukocyte interactions.In this review,we will focus on the roles of CXC chemokines and their receptors in the development,progression,and metastasis of gastric tumors,and discuss their therapeutic potential for gastric cancer. 展开更多
关键词 CHEMOKINE Chemokine receptor Gastric neoplasm therapeutic target
下载PDF
Aryl hydrocarbon receptor dynamics in esophageal squamous cell carcinoma:From immune modulation to therapeutic opportunities
3
作者 Mina Rahmati Hassan Moghtaderi +1 位作者 Saeed Mohammadi Ahmed Al-Harrasi 《World Journal of Experimental Medicine》 2024年第3期48-56,共9页
Esophageal squamous cell carcinoma(ESCC)is a substantial global health burden.Immune escape mechanisms are important in ESCC progression,enabling cancer cells to escape the surveillance of the host immune system.One k... Esophageal squamous cell carcinoma(ESCC)is a substantial global health burden.Immune escape mechanisms are important in ESCC progression,enabling cancer cells to escape the surveillance of the host immune system.One key player in this process is the Aryl Hydrocarbon Receptor(AhR),which influences multiple cellular processes,including proliferation,differentiation,metabolism,and immune regulation.Dysregulated AhR signaling participates in ESCC development by stimulating carcinogenesis,epithelial-mesenchymal transition,and immune escape.Targeting AhR signaling is a potential therapeutic approach for ESCC,with AhR ligands showing efficacy in preclinical studies.Additionally,modification of AhR ligands and combination therapies present new opportunities for therapeutic intervention.This review aims to address the knowledge gap related to the role of AhR signaling in ESCC pathogenesis and immune escape. 展开更多
关键词 Esophageal squamous cell carcinoma Aryl hydrocarbon receptor Immune escape Tumor microenvironment IMMUNOSUPPRESSION therapeutic targeting
下载PDF
Mitophagy in intracerebral hemorrhage:a new target for therapeutic intervention 被引量:2
4
作者 Yiyang Chen Wenxuan Tang +5 位作者 Xinqi Huang Yumei An Jiawen Li Shengye Yuan Haiyan Shan Mingyang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期316-323,共8页
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re... Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run. 展开更多
关键词 intracerebral hemorrhage mitochondrial dysfunction MITOPHAGY NEUROINFLAMMATION NEUROPROTECTION reactive oxygen species secondary brain injury therapeutic target
下载PDF
Subretinal fibrosis secondary to neovascular age-related macular degeneration:mechanisms and potential therapeutic targets
5
作者 Jingxiang Zhang Xia Sheng +3 位作者 Quanju Ding Yujun Wang Jiwei Zhao Jingfa Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第2期378-393,共16页
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ... Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis. 展开更多
关键词 choroidal neovascularization epithelial-mesenchymal transition mesenchymal transition MYOFIBROBLAST neovascular age-related macular degeneration submacular fibrosis subretinal fibrosis therapeutic targets transforming growth factor-β vascular endothelial growth factor
下载PDF
Ubiquitination in osteosarcoma:unveiling the impact on cell biology and therapeutic strategies
6
作者 Jianlin Shen Yue Lai +3 位作者 Yanjiao Wu Xuan Lin Cheng Zhange Huan Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第10期880-897,共18页
Ubiquitination,a multifaceted post-translational modification,regulates protein function,degradation,and gene expression.The pivotal role of ubiquitination in the pathogenesis and progression of cancer,including color... Ubiquitination,a multifaceted post-translational modification,regulates protein function,degradation,and gene expression.The pivotal role of ubiquitination in the pathogenesis and progression of cancer,including colorectal,breast,and liver cancer,is well-established.Osteosarcoma,an aggressive bone tumor predominantly affecting adolescents,also exhibits dysregulation of the ubiquitination system,encompassing both ubiquitination and deubiquitination processes.This dysregulation is now recognized as a key driver of osteosarcoma development,progression,and chemoresistance.This review highlights recent progress in elucidating how ubiquitination modulates tumor behavior across signaling pathways.We then focus on the mechanisms by which ubiquitination influences osteosarcoma cell function.Finally,we discuss the potential for targeting the ubiquitin-proteasome system in osteosarcoma therapy.By unraveling the impact of ubiquitination on osteosarcoma cell physiology,we aim to facilitate the development of novel strategies for prognosis,staging,treatment,and overcoming chemoresistance. 展开更多
关键词 UBIQUITINATION OSTEOSARCOMA cancer development therapeutic target
下载PDF
Targeting therapy for hepatocellular carcinoma by delivering microRNAs as exosomal cargo
7
作者 Takeshi Suda 《World Journal of Gastroenterology》 SCIE CAS 2024年第17期2369-2370,共2页
Exosomes,the smallest extracellular vesicles,have gained significant attention as key mediators in intercellular communication,influencing both physiological and pathological processes,particularly in cancer progressi... Exosomes,the smallest extracellular vesicles,have gained significant attention as key mediators in intercellular communication,influencing both physiological and pathological processes,particularly in cancer progression.A recent review article by Wang et al was published in a timely manner to stimulate future research and facilitate practical developments for targeted treatment of hepatocellular carcinoma using exosomes,with a focus on the origin from which exosomes derive.If information about the mechanisms for delivering exosomes to specific cells is incorporated,the concept of targeted therapy for hepatocellular carcinoma using exosomes could be more comprehensively understood. 展开更多
关键词 Exosomal delivery therapeutic targets MICRORNAS Hepatocellular carcinoma
下载PDF
Targeting neuronal PAS domain protein 2 and KN motif/ankyrin repeat domains 1:Advances in type 2 diabetes therapy
8
作者 Chun-Han Cheng Wen-Rui Hao Tzu-Hurng Cheng 《World Journal of Diabetes》 SCIE 2024年第11期2173-2176,共4页
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t... This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D. 展开更多
关键词 Type 2 diabetes Neuronal PAS domain protein 2 KN motif and ankyrin repeat domain 1 β-cell dysfunction therapeutic target
下载PDF
Gene signatures to therapeutics:Assessing the potential of ivermectin against t(4;14)multiple myeloma
9
作者 Yang Song Hao-Jun Zhang +5 位作者 Xia Song Jie Geng Hong-Yi Li Li-Zhong Zhang Bo Yang Xue-Chun Lu 《World Journal of Clinical Oncology》 2024年第1期115-129,共15页
BACKGROUND Multiple myeloma(MM)is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow.Th... BACKGROUND Multiple myeloma(MM)is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow.The translocation,(t)(4;14),results in high-risk MM with limited treatment alternatives.Thus,there is an urgent need for identification and validation of potential treatments for this MM subtype.Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.AIM To elucidate the molecular basis and search for potential effective drugs of t(4;14)MM subtype by employing a comprehensive approach.METHODS The transcriptional signature of t(4;14)MM was sourced from the Gene Expression Omnibus.Two datasets,GSE16558 and GSE116294,which included 17 and 15 t(4;14)MM bone marrow samples,and five and four normal bone marrow samples,respectively.After the differentially expressed genes were identified,the Cytohubba tool was used to screen for hub genes.Then,the hub genes were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis.Using the STRING database and Cytoscape,protein–protein interaction networks and core targets were identified.Potential small-molecule drugs were identified and validated using the Connectivity Map database and molecular docking analysis,respectively.RESULTS In this study,a total of 258 differentially expressed genes with enriched functions in cancer pathways,namely cytokine receptor interactions,nuclear factor(NF)-κB signaling pathway,lipid metabolism,atherosclerosis,and Hippo signaling pathway,were identified.Ten hub genes(cd45,vcam1,ccl3,cd56,app,cd48,btk,ccr2,cybb,and cxcl12)were identified.Nine drugs,including ivermectin,deforolimus,and isoliquiritigenin,were predicted by the Connectivity Map database to have potential therapeutic effects on t(4;14)MM.In molecular docking,ivermectin showed strong binding affinity to all 10 identified targets,especially cd45 and cybb.Ivermectin inhibited t(4;14)MM cell growth via the NF-κB pathway and induced MM cell apoptosis in vitro.Furthermore,ivermectin increased reactive oxygen species accumulation and altered the mitochondrial membrane potential in t(4;14)MM cells.CONCLUSION Collectively,the findings offer valuable molecular insights for biomarker validation and potential drug development in t(4;14)MM diagnosis and treatment,with ivermectin emerging as a potential therapeutic alternative. 展开更多
关键词 Multiple myeloma Functional enrichment analysis Molecular docking simulation Gene expression profiling therapeutic target IVERMECTIN
下载PDF
Relevance and therapeutic potential of Cyp A targeting to block apoptosis inducing factor-mediated neuronal cell death 被引量:2
10
作者 Nunzianna Doti Menotti Ruvo 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1428-1429,共2页
Programmed cell death (PCD) signaling pathways are import- ant contributors to acute neurological insults such as hypox- ic-ischemic brain damage, traumatic brain injury, stroke etc. The pathogenesis of all these di... Programmed cell death (PCD) signaling pathways are import- ant contributors to acute neurological insults such as hypox- ic-ischemic brain damage, traumatic brain injury, stroke etc. The pathogenesis of all these diseases is closely linked with ab- erration of apoptotic cell death pathways. Mitochondria play a crucial role during PCD, acting as both sensors of death signals, and as initiators of biochemical path- ways, which cause cell death (Bras et al., 2005). Cytochrome c was the firstly identified apoptogenic factor released from mitochondria into the cytosol, where it induces apoptosome formation through the activation of caspases. Other proteins, such as apoptosis inducing factor (AIF), have been subsequently identified as mitochondrial released factors. AIF contributes to apoptotic nuclear DNA damage (Bras et al., 2005). in a caspase-independent way 展开更多
关键词 AIF Relevance and therapeutic potential of Cyp A targeting to block apoptosis inducing factor-mediated neuronal cell death
下载PDF
MicroRNAs in mouse and rat models of experimental epilepsy and potential therapeutic targets 被引量:6
11
作者 Bridget Martinez Philip V.Peplow 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2108-2118,共11页
Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chron... Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals(mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p,-146a-5p,-10a-5p,-21a-3p,-27a-3p,-142a-5p,-212-3p,-431-5p, and-155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451,-10a-5p,-21a-5p,-27a-5p,-142a-5p,-431-5p,-155, and-134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p,-27a-3p,-155,-134,-181a, and-146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid. 展开更多
关键词 EPILEPSY experimental models MICRORNA MOUSE RAT seizures therapeutic targets
下载PDF
Current therapeutic modalities and chemopreventive role of natural products in liver cancer:Progress and promise 被引量:3
12
作者 Amit Kumar Singh Shiv Vardan Singh +3 位作者 Ramesh Kumar Shashank Kumar Sabyasachi Senapati Abhay K Pandey 《World Journal of Hepatology》 2023年第1期1-18,共18页
Liver cancer is a severe concern for public health officials since the clinical cases are increasing each year,with an estimated 5-year survival rate of 30%–35%after diagnosis.Hepatocellular carcinoma(HCC)constitutes... Liver cancer is a severe concern for public health officials since the clinical cases are increasing each year,with an estimated 5-year survival rate of 30%–35%after diagnosis.Hepatocellular carcinoma(HCC)constitutes a significant subtype of liver cancer(approximate75%)and is considered primary liver cancer.Treatment for liver cancer mainly depends on the stage of its progression,where surgery including,hepatectomy and liver transplantation,and ablation and radiotherapy are the prime choice.For advanced liver cancer,various drugs and immunotherapy are used as first-line treatment,whereas second-line treatment includes chemotherapeutic drugs from natural and synthetic origins.Sorafenib and lenvatinib are first-line therapies,while regorafenib and ramucirumab are secondline therapy.Various metabolic and signaling pathways such as Notch,JAK/STAT,Hippo,TGF-β,and Wnt have played a critical role during HCC progression.Dysbiosis has also been implicated in liver cancer.Drug-induced toxicity is a key obstacle in the treatment of liver cancer,necessitating the development of effective and safe medications,with natural compounds such as resveratrol,curcumin,diallyl sulfide,and others emerging as promising anticancer agents.This review highlights the current status of liver cancer research,signaling pathways,therapeutic targets,current treatment strategies and the chemopreventive role of various natural products in managing liver cancer. 展开更多
关键词 Liver cancer Hepatocellular carcinoma Signaling pathways therapeutic targets Natural products CHEMOPREVENTIVE
下载PDF
Leukocyte immunoglobulin-like receptor B2 overexpression as a promising therapeutic target and noninvasive screening biomarker for colorectal cancer 被引量:2
13
作者 Qian-Qian Wang Lei Zhou +3 位作者 Geng Qin Chang Tan Yuan-Chen Zhou Shu-Kun Yao 《World Journal of Gastroenterology》 SCIE CAS 2023年第37期5313-5326,共14页
BACKGROUND Colorectal cancer(CRC)has become the second most deadly malignancy in the world,and the exploration of screening markers and precise therapeutic targets is urgent.Our previous research identified leukocyte ... BACKGROUND Colorectal cancer(CRC)has become the second most deadly malignancy in the world,and the exploration of screening markers and precise therapeutic targets is urgent.Our previous research identified leukocyte immunoglobulin-like receptor B2(LILRB2)protein as a characteristic protein of CRC,but the association between LILRB2 expression and clinicopathological features,the internal mechanism related to CRC progression,and screening diagnostic efficacy are not clear.Therefore,we hypothesized that LILRB2 is significantly highly expressed in CRC tissues,correlated with advanced stage and a poor prognosis,and could be used as a therapeutic target and potential screening biomarker for CRC.AIM To explore whether LILRB2 can be used as a potential therapeutic target and noninvasive screening biomarker for CRC.METHODS Patients who underwent radical surgery for CRC at China-Japan Friendship Hospital between February 2021 and October 2022 were included.Cancer and paracancerous tissues were collected to verify LILRB2 expression,and the association between LILRB2 expression and clinicopathological features was analysed.Serum was collected from CRC patients,adenoma patients and healthy controls during the same period to assess the diagnostic value of LILRB2 as a noninvasive screening biomarker,and its diagnostic value was further compared with that of the traditional markers carcinoembryonic antigen(CEA)and carbohydrate antigen 19-9(CA19-9).RESULTS A total of 58 CRC patients were included,and LILRB2 protein was significantly overexpressed in cancer tissues compared with paracancerous tissues(P<0.001).Angiopoietin-like protein 2(ANGPTL2)protein,as the ligand of LILRB2,was synergistically overexpressed in CRC tissues(P<0.001),and overexpression of LILRB2 and ANGPTL2 protein was significantly correlated with poor to moderate differentiation,vascular involvement,lymph node metastasis,distant metastasis,advanced tumor-node-metastasis stage and a poor prognosis(P<0.05),which suggested that LILRB2 and ANGPTL2 are closely associated with CRC progression.In addition,serum LILRB2 concentrations increased stepwise in healthy individuals,adenoma patients and CRC patients with statistically significant differences.The sensitivity of serum LILRB2 for the diagnosis of CRC was 89.74%,the specificity was 88.89%,the area under the curve was 0.95,and the diagnostic efficacy was better than that of conventional CEA and CA19-9.CONCLUSION LILRB2 protein can be used as a potential novel therapeutic target and noninvasive screening biomarker for CRC,which is beneficial for early screening and precise treatment. 展开更多
关键词 Colorectal cancer Leukocyte immunoglobulin-like receptor B2 Angiopoietin-like protein 2 therapeutic target Noninvasive screening biomarker
下载PDF
Targeting microthrombosis and neuroinflammation with vepoloxamer for therapeutic neuroprotection after traumatic brain injury
14
作者 Ye Xiong Li Zhang +2 位作者 Zheng Gang Zhang Asim Mahmood Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期413-414,共2页
Traumatic brain injury (TBI): Despite improved supportive and rehabilitative care of TBI patients, TBI remains a leading cause of death and disability worldwide. To date, no effective pharmacological treatments are... Traumatic brain injury (TBI): Despite improved supportive and rehabilitative care of TBI patients, TBI remains a leading cause of death and disability worldwide. To date, no effective pharmacological treatments are available for TBI. The mechanisms underlying brain damage and repair following TBI are complex and not completely understood. Coagulopathy after TBI is frequent and an independent prognostic factor for unfavorable outcome and prognosis (Stein and Smith, 2004). It may be amenable to treatment, and effective management of coagulopathy may protect from secondary injury and poor outcomes. Although the main challenge for TBI management is to address the risk of hypocoagulopathy with prolonged bleeding and progression of hemorrhagic lesions, the risk of hypercoagulopathy with an increased microthrombosis formation warrants investigation to reduce neurological deficits after TBI. 展开更多
关键词 TBI targeting microthrombosis and neuroinflammation with vepoloxamer for therapeutic neuroprotection after traumatic brain injury
下载PDF
A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease 被引量:2
15
作者 Xi Chen Yuhu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期324-330,共7页
The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent bu... The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease. 展开更多
关键词 anterior brain system CEREBELLUM CHOLINERGIC cognitive impairment DOPAMINERGIC dual syndrome hypothesis neuroimage NEUROTRANSMITTER Parkinson’s disease posterior brain system therapeutic targets
下载PDF
Lipid metabolism analysis in esophageal cancer and associated drug discovery 被引量:1
16
作者 Ruidi Jiao Wei Jiang +3 位作者 Kunpeng Xu Qian Luo Luhua Wang Chao Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期1-15,共15页
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ... Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers. 展开更多
关键词 Lipid metabolism Esophageal cancer PROGRESSION Treatment resistance New therapeutic targets
下载PDF
Leukocyte immunoglobulin-like receptor B2:A promising biomarker for colorectal cancer 被引量:1
17
作者 Wen-Zhuo Zhao Hong-Gang Wang Xiao-Zhong Yang 《World Journal of Gastroenterology》 SCIE CAS 2024年第4期421-423,共3页
According to the latest global cancer statistics,colorectal cancer(CRC)has emerged as the third most prevalent malignant tumor across the globe.In recent decades,the medical field has implemented several levels of CRC... According to the latest global cancer statistics,colorectal cancer(CRC)has emerged as the third most prevalent malignant tumor across the globe.In recent decades,the medical field has implemented several levels of CRC screening tests,encompassing fecal tests,endoscopic examinations,radiological examinations and blood tests.Previous studies have shown that leukocyte immunoglobulin-like receptor B2(LILRB2)is involved in inhibiting immune cell function,immune evasion,and promoting tumor progression in acute myeloid leukemia and nonsmall cell lung cancer.However,its interaction with CRC has not been reported yet.Recently,a study published in the World Journal of Gastroenterology revealed that LILRB2 and its ligand,angiopoietin-like protein 2,are markedly overexpressed in CRC.This overexpression is closely linked to tumor progression and is indicative of a poor prognosis.The study highlights the potential of utilizing the concentration of LILRB2 in serum as a promising biomarker for tumors.However,there is still room for discussion regarding the data processing and analysis in this research. 展开更多
关键词 Colorectal cancer Leukocyte immunoglobulin-like receptor B2 Angiopoietinlike protein 2 therapeutic target Noninvasive screening biomarker
下载PDF
Glycolytic dysregulation in Alzheimer's disease:unveiling new avenues for understanding pathogenesis and improving therapy
18
作者 You Wu Lijie Yang +2 位作者 Wanrong Jiang Xinyuan Zhang Zhaohui Yao 《Neural Regeneration Research》 SCIE CAS 2025年第8期2264-2278,共15页
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli... Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease glial cells GLYCOLYSIS neuronal metabolism PATHOGENESIS therapeutic targets
下载PDF
Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage
19
作者 Ruoyu Huang Qiuyu Pang +4 位作者 Lexin Zheng Jiaxi Lin Hanxi Li Lingbo Wan Tao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1015-1030,共16页
Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol ... Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage. 展开更多
关键词 cell death cholesterol metabolism intracerebral hemorrhage MYELINATION therapeutic target
下载PDF
Ferroptosis in liver diseases:Fundamental mechanism and clinical implications
20
作者 Ming-Shuang Lai Xi-Peng Yan +2 位作者 Donald R Branch Melika Loriamini Li-Min Chen 《World Journal of Gastroenterology》 SCIE CAS 2024年第32期3730-3738,共9页
This editorial discusses a recently published paper in the World Journal of Gastroenterology.Our research focuses on p53's regulatory mechanism for controlling ferroptosis,as well as the intricate connection betwe... This editorial discusses a recently published paper in the World Journal of Gastroenterology.Our research focuses on p53's regulatory mechanism for controlling ferroptosis,as well as the intricate connection between ferroptosis and liver diseases.Ferroptosis is a specific form of programmed cell death that is dependent on iron and displays unique features in terms of morphology,biology,and genetics,distinguishing it from other forms of cell death.Ferroptosis can affect the liver,which is a crucial organ responsible for iron storage and metabolism.Mounting evidence indicates a robust correlation between ferroptosis and the advancement of liver disorders.P53 has a dual effect on ferroptosis through various distinct signaling pathways.However,additional investigations are required to clarify the regulatory function of p53 metabolic targets in this complex association with ferroptosis.In the future,researchers should clarify the mechanisms by which ferroptosis and other forms of programmed cell death contribute to the progression of liver diseases.Identifying and controlling important regulatory factors associated with ferroptosis present a promising therapeutic strategy for liver disorders. 展开更多
关键词 Liver disease P53 Programmed cell death Ferroptosis therapeutic target
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部