期刊文献+
共找到1,383篇文章
< 1 2 70 >
每页显示 20 50 100
Temperature coefficient of resistivity of TiAlN films deposited by radio frequency magnetron sputtering 被引量:4
1
作者 Min-Ho PARK Sang-Ho KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期433-438,共6页
Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substra... Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substrate at 400 ℃ by radio frequency (RF) magnetron co-sputtering using titanium nitride (TIN) and aluminum nitride (AlN) as ceramic targets. The temperature coefficient of resistivity (TCR) and oxidation resistance, which are the most important properties of a heat resistor, were studied depending on the plasma power density applied during sputtering. With the increasing plasma power density, the crystallinity, grain size and surface roughness of the applied film increased, resulting in less grain boundaries with large grains. The Ti, Al and N binding energies obtained from X-ray photoelectron spectroscopy analysis disclosed the nitrogen deficit in the TiAlN stoichiometry that makes the films more electrically resistive. The highest oxidation resistance and the lowest TCR of-765.43×10^-6 K-l were obtained by applying the highest plasma power density. 展开更多
关键词 inkjet printhead TIALN radio frequency magnetron sputtering temperature coefficient of resistivity
下载PDF
Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method 被引量:3
2
作者 Jikai Si Suzhen Zhao +2 位作者 Haichao Feng Yihua Hu Wenping Cao 《CES Transactions on Electrical Machines and Systems》 2018年第1期166-174,共9页
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the... Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures. 展开更多
关键词 Equivalent thermal network method magnetic-thermal coupling method power frequency iron loss surface-mounted and interior permanent magnet synchronous motor(SIPMSM) temperature field
下载PDF
Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics
3
作者 Tianbao CHENG Weiguo LI +2 位作者 Yushan SHI Wei LU Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期201-210,共10页
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TS... The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better. 展开更多
关键词 thermal shock resistance(TSR) ultra-high temperature ceramic(UHTC) mechanical boundary condition temperature-dependent material property thermal environment
下载PDF
Effect of contact thermal resistance on temperature distributions of concrete-filled steel tubes in fire 被引量:5
4
作者 吕学涛 杨华 张素梅 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期81-88,共8页
To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact th... To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire. 展开更多
关键词 contact thermal resistance temperature distribution concrete-filled steel tube heal transfer
下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
5
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Surface Temperatures Determination with Influencing Convective and Radiative Thermal Resistance Parameters of Combustor of Gas Turbine
6
作者 Ebene Ufot Ibiba Emmanuel Douglas Howel Iberefata Hart 《Engineering(科研)》 2014年第9期550-558,共9页
Surface temperatures were determined with due consideration of the influencing thermal conditions of conductive, convective and radiative heat. A general condition of heat influx to a point was formulated with the end... Surface temperatures were determined with due consideration of the influencing thermal conditions of conductive, convective and radiative heat. A general condition of heat influx to a point was formulated with the end effect of such influx to the receiving point. It was noted that the heat flow will cause a rate of change of internal energy of the point. Based on the theory of the rate of change of internal energy, a combustor model of cylindrical cross-section was used to generate out the timely temperature equation. Further work was done on this model equation to convert it to non-dimensional. The conversion of this equation was very essential in summing up the parameters that can influence the timely generation of the temperatures. Interestingly, it is noted that when a material withstands temperatures, it will equally withstand the thermal stresses that inherently will be developed in it. From the results, the work came up with a table showing the range of these slope figures of equations, a point was also found for a vital recommendation for further studies, where such figures can be used to check the suitability for thermal stress levels and the lifetime of combustor of such thickness. 展开更多
关键词 Surface temperatureS CONVECTIVE and RADIATIVE thermal Resistance PARAMETERS Gas TURBINE
下载PDF
High-temperature corrosion-resistance performance of electro-thermal explosion spraying coating
7
作者 魏世丞 徐滨士 +1 位作者 王海斗 金国 《Journal of Central South University》 SCIE EI CAS 2005年第S2期195-198,共4页
As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-c... As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-crystal, micro-crystal and millimicron-crystal and other microstructure are formed. The corrosion-resistance ability of electro-thermal explosion spraying coating in high temperature environment was surveyed respectively. SEM equipped with EDS was employed to analyze the microstructure of spraying coating before and after corrosion. The corrosion-resistance mechanism of the spraying coating was discussed. 展开更多
关键词 high temperature CORROSION-RESISTANCE electro-thermal explosion SPRAYING COATING
下载PDF
Skin temperature measurement method 被引量:3
8
作者 彭友辉 连之伟 潘黎 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期258-261,共4页
To improve the accuracy of skin temperature measurements in thermal comfort research,a new measurement method based on a new thermometer is proposed.A platinum film resistance(Pt1000)sensor of the thermometer is wel... To improve the accuracy of skin temperature measurements in thermal comfort research,a new measurement method based on a new thermometer is proposed.A platinum film resistance(Pt1000)sensor of the thermometer is welded on a printed circuit board to eliminate the heat loss from the leads and avoid the influence of the surrounding thermal environment.In order to determine the suitable thickness of the board,a steady heat conduction model is established.The simulation results reveal that when the thickness of the board is 0.2 mm,the influence of the surrounding air can be effectively prevented and the skin temperature does not obviously increase.The experimental results of verification show that the maximum measurement error of the skin temperature measured by the thermometer is 0.24 ℃,and the average measurement error of the skin temperature is 0.04 ℃.The proposed method provides an effective and reliable option for the skin temperature measurement in thermal comfort research. 展开更多
关键词 thermal comfort skin temperature MEASUREMENT platinum film resistance
下载PDF
A Three-Layers Plane Wall Exposed to Oscillating Temperatures with Different Amplitudes and Frequencies
9
作者 Shalom Sadik 《Energy and Power Engineering》 2018年第4期165-185,共21页
A linear model of three layers plane wall exposed to oscillating temperatures with different amplitudes and frequencies was built by using a physical superposition. A physical superposition of two states was performed... A linear model of three layers plane wall exposed to oscillating temperatures with different amplitudes and frequencies was built by using a physical superposition. A physical superposition of two states was performed, one state is a wall which one surface is exposed to oscillating temperature and the other surface is exposed to zero relative temperature and a second state is a wall which one surface is exposed to relative zero temperature while the other surface is exposed to oscillating temperature with different amplitudes and frequencies. Temperature distributions were introduced for different amplitudes, frequencies and thermal conductivities. It was shown that increasing the frequency value decreases the temperature penetration length, high frequency value leads to extremum temperature values changes on the surface while low frequency value allows gradually temperature changes during the time period. Temperature distribution lines where there are at the same time heat flux entry and heat flux exit were not received for the same constraint frequencies. 展开更多
关键词 OSCILLATING frequency temperature Constraint Amplitude thermal Conductivity thermal DIFFUSIVITY
下载PDF
Temperature Oscillations into a Couette-Poiseuille Flow
10
作者 Shalom Sadik 《Energy and Power Engineering》 2018年第9期414-433,共20页
Following previous work that discussed temperature fluctuations without flowing media a physical model of temperature oscillations into a Couette-Poiseuille flow was built. The temperature distribution into the flow w... Following previous work that discussed temperature fluctuations without flowing media a physical model of temperature oscillations into a Couette-Poiseuille flow was built. The temperature distribution into the flow was calculated according to oscillations constraints on the upper and lower plates, and heat dissipation due to shear stresses into the fluid. The physical model deals with different temperature amplitudes and different frequencies constraints on the upper and the lower plates. A physical superposition and complex numbers were used. It was shown that when the constraint frequency increases, its penetration capacity is reduced. Increasing gap width between plates leads to increased fluid temperature values due to enlarged fluid velocity. Increasing thermal diffusivity, increases constrains temperatures penetration intensity. 展开更多
关键词 temperature AMPLITUDE frequency DISSIPATION Function thermal DIFFUSIVITY
下载PDF
Effect of Andalusite Aggregate Pre-fired at Different Temperatures on Properties of Al2O3-SiC-C Castables 被引量:1
11
作者 TIAN Xuekun CHEN Anbang +3 位作者 LI Na LIAO Guihua DING Dafei YE Guotian 《China's Refractories》 CAS 2019年第2期41-45,共5页
This work investigates the effect of the pre-firing temperature of andalusite aggregate(5-3 mm)on the conversion of andalusite,the volume stability,the thermal shock resistance and the slag resistance of Al2O3-SiC-C c... This work investigates the effect of the pre-firing temperature of andalusite aggregate(5-3 mm)on the conversion of andalusite,the volume stability,the thermal shock resistance and the slag resistance of Al2O3-SiC-C castables.The results show that the volume stability and the thermal shock resistance of the castables could be adjusted at different pre-firing temperatures of andalusite aggregates.There was no noticeable difference in the slag resistance between the specimens without andalusite and those with andalusite aggregate pre-fired at different temperatures. 展开更多
关键词 ANDALUSITE pre-firing temperature alumina-silicon carbide-carbon CASTABLES thermal shock RESISTANCE volume stability slag RESISTANCE
下载PDF
Synthesis of N-Alkane Mixture Microcapsule and Its Application in Low-Temperature Protective Fabric
12
作者 陈旭 王瑞 +2 位作者 LI Tingting WU Bingyang LIU Xing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期525-531,共7页
We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. Th... We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body. 展开更多
关键词 low-temperature resistance phase change microcapsules thermal property melamine-urea-formaldehyde resin
下载PDF
Synergistic regulation of temperature resistance and thermal insulation performance of zirconia-based ceramic fibers 被引量:1
13
作者 Yong-Shuai Xie Ying Peng +5 位作者 Zhe-Zhe Deng Ze Zhu Yuan Cheng De-Hua Ma Lu-Yi Zhu Xing-Hong Zhang 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4189-4200,共12页
ZrO_(2) fiber is a promising high-temperature resistant and heat-insulating fiber material.However,the decrease in mechanical properties caused by grain growth at high temperatures seriously affects its application.Ho... ZrO_(2) fiber is a promising high-temperature resistant and heat-insulating fiber material.However,the decrease in mechanical properties caused by grain growth at high temperatures seriously affects its application.How to achieve the synergy of its temperature resistance and the thermal insulation performance is still the focus of the current industry.In this work,we started with doping inequivalent elements and studied the phase composition,temperature resistance,and thermal insulation properties of Y_(2)O_(3)-ZrO_(2) ceramic fibers by adjusting the Y/Zr molar ratio.The results showed that Y_(2)O_(3) could enter the crystal lattice of ZrO_(2) and form a solid solution.With the increase in Y_(2)O_(3) content,the structure of fibers changed from a tetragonal phase to a cubic phase,and the configurational entropy of the system increased.The larger configuration entropy in the sample could produce a robust steric hindrance effect,inhibiting grain growth.After heat treatment at 1300℃,the grain size of Y_(2)Zr_(2)O_(7)(Y5Z5)fibers was only 61.8%that of Y_(0.1)Zr_(0.9)O_(1.95)(Y1Z9)fibers.The smaller grain size made the Y5Z5 fibers still have excellent flexibility and deformation recovery performance after heat treatment at 1300℃and could still return to the original state after 85%compression or folded in half.In addition,due to the larger configurational entropy,the mean free path of phonon scattering was shortened,thereby improving the thermal insulation performance of the fiber.In short,this work achieves the synergistic effect of temperature resistance and thermal insulation properties of zirconia-based fiber materials only through simple inequivalent element doping. 展开更多
关键词 Ceramics fiber ZrO_(2) Y_(2)O_(3) thermal insulation temperature resistance
原文传递
Operation optimization of prefabricated light modular radiant heating system:Thermal resistance analysis and numerical study
14
作者 LI Yao HU Ru-kun +4 位作者 XIN Li XUE Jie HUANG Fei XIA Jian-wei YANG Xiao-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1983-1997,共15页
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,... The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system. 展开更多
关键词 radiant heating system thermal resistance analysis simplified model numerical simulation heat flux temperatur
下载PDF
Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system 被引量:3
15
作者 Yang Liu Ya-Xin Ma +2 位作者 Qing-Yu Meng Xi-Cheng Xin Shuai-Shuai Ming 《Advances in Manufacturing》 SCIE CAS CSCD 2018年第4期384-400,共17页
In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation;these cause thermal errors and affect the machining accuracy. To address ... In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation;these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoffs law. Then, they are solved using the Newmark-β method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal conduction resistance of each component and the thermalconvection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions. 展开更多
关键词 Motorized SPINDLE SYSTEM thermal RESISTANCE network model temperature field COOLING SYSTEM
原文传递
Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device 被引量:6
16
作者 Aritra Acharyya Suranjana Banerjee J.P.Banerjee 《Journal of Semiconductors》 EI CAS CSCD 2013年第2期19-30,共12页
The authors have developed a large-signal simulation technique extending an in-house small-signal simulation code for analyzing a 94 GHz double-drift region impact avalanche transit time device based on silicon with a... The authors have developed a large-signal simulation technique extending an in-house small-signal simulation code for analyzing a 94 GHz double-drift region impact avalanche transit time device based on silicon with a non-sinusoidal voltage excitation and studied the effect of junction temperature between 300 and 550 K on the large-signal characteristics of the device for both continuous wave (CW) and pulsed modes of operation. Results show that the large-signal RF power output of the device in both CW and pulsed modes increases with the increase of voltage modulation factor up to 60%, but decreases sharply with further increase of voltage modulation factor for a particular junction temperature; while the same parameter increases with the increase of junction temperature for a particular voltage modulation factor. Heat sinks made of copper and type-IIA diamond are designed to carry out the steady-state and transient thermal analysis of the device operating in CW and pulsed modes respectively. Authors have adopted Olson's method to carry out the transient analysis of the device, which clearly establishes the superiority of type-IIA diamond over copper as the heat sink material of the device from the standpoint of the undesirable effect of frequency chirping due to thermal transients in the pulsed mode. 展开更多
关键词 admittance characteristics chirp bandwidth frequency chirping junction temperature large-signal analysis transient thermal analysis
原文传递
ODS MA754合金传热界面接触热阻实验研究
17
作者 杨万奎 郭啸宇 +6 位作者 曾和荣 郭玉川 唐彬 王冠博 严睿豪 孟兆明 郭斯茂 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期100-108,共9页
鉴于ODS MA754合金传热界面的接触热阻参数对全固态堆芯空间反应堆系统的热量导出具有重要影响,研发和设计了高温高压接触热阻实验装置,测量了不同温度(20~800℃)、压力(0~80 MPa)、气体氛围(He、CO_(2))以及试件表面粗糙度(1.6、3.2μm... 鉴于ODS MA754合金传热界面的接触热阻参数对全固态堆芯空间反应堆系统的热量导出具有重要影响,研发和设计了高温高压接触热阻实验装置,测量了不同温度(20~800℃)、压力(0~80 MPa)、气体氛围(He、CO_(2))以及试件表面粗糙度(1.6、3.2μm)下ODS MA754合金传热界面的接触热阻,并基于测试获得的宽量程数据点,建立了ODS MA754合金的接触热阻数据库。实验结果表明:随着接触面温度和压力的升高,界面接触热阻降低,且热阻降低的速率逐渐减小;相较于表面粗糙度为1.6μm的试件,粗糙度为3.2μm试件表面的界面接触热阻明显偏大,实验得到的定量关系可为工程样件的加工粗糙度要求提供依据;He气氛下的接触热阻远小于CO_(2)气氛,在0.1 MPa、100℃工况下,He气氛接触热阻约为CO_(2)气氛接触热阻的1/4。该研究结果可为空间反应堆的热工设计提供数据参考。 展开更多
关键词 空间反应堆 ODS MA754合金 接触热阻 高温高压 表面粗糙度
下载PDF
镀铝对CoCrNiAlY-YSZ-LaMgAl_(11)O_(19)双陶瓷热障涂层高温抗氧化行为的影响
18
作者 解志文 陶浩天 +3 位作者 刘天新 陈永君 胡素影 马北一 《航空制造技术》 CSCD 北大核心 2024年第4期58-63,共6页
采用电弧离子镀(AIP)技术在CoCrNiAlY-YSZ-LaMA双陶瓷涂层表面沉积一层Al镀层,利用XRD、SEM和EDS等微尺度分析表征方法,全面解析涂层在大气暴露过程中的高温氧化行为。研究结果表明,未镀铝LaMA层在氧化过程中发生严重体积收缩,导致纵向... 采用电弧离子镀(AIP)技术在CoCrNiAlY-YSZ-LaMA双陶瓷涂层表面沉积一层Al镀层,利用XRD、SEM和EDS等微尺度分析表征方法,全面解析涂层在大气暴露过程中的高温氧化行为。研究结果表明,未镀铝LaMA层在氧化过程中发生严重体积收缩,导致纵向微裂纹萌生和扩展。这些微裂纹成为氧气向内部扩散的通道,导致涂层呈现持续氧化增重趋势、TGO快速生长和严重的元素扩散,并最终加剧涂层断裂失效。但镀铝涂层样品表现出更好的高温抗氧化性能与结构稳定性,高温氧化过程中,表面Al镀层与氧气发生原位反应生成致密Al2O3屏障层,有效阻止或延迟氧气内部渗透,使TGO缓慢生长,其氧化增重从20h时的8.59mg/cm^(2)略微上升到80h时的9.46mg/cm^(2)。本研究结果为双陶瓷热障涂层的延寿设计与界面热生长应力调控开辟出全新技术途径和理论视野。 展开更多
关键词 双陶瓷热障涂层 Al镀层 高温抗氧化性能 热生长氧化物(TGO) 结构稳定性
下载PDF
夏热冬冷地区住宅浴室热湿环境与洗浴行为研究
19
作者 徐爽 彭金湛 +3 位作者 曲绍鹤 钱晓林 周翔 罗茂辉 《暖通空调》 2024年第5期93-99,共7页
对上海地区住宅浴室热湿环境进行了实地测量,分析了浴室热湿环境特征,并通过网络问卷调研了典型人群的洗浴行为。结果表明:浴室热湿环境受洗浴行为影响明显,淋浴开始后空气温度迅速升高,相对湿度接近饱和状态,淋浴结束后相对湿度需要较... 对上海地区住宅浴室热湿环境进行了实地测量,分析了浴室热湿环境特征,并通过网络问卷调研了典型人群的洗浴行为。结果表明:浴室热湿环境受洗浴行为影响明显,淋浴开始后空气温度迅速升高,相对湿度接近饱和状态,淋浴结束后相对湿度需要较长时间才能恢复至初始状态,与常规居家场景相比,洗浴过程中的浴室热湿环境偏离常规热舒适区;夏热冬冷地区居民洗浴行为受季节影响明显,淋浴水温冬季偏暖(43.3℃左右)、夏季偏凉(一般36~40℃);洗浴频次以1天1次或2天1次为主;洗浴时长夏季多为5~10 min、冬季多为10~20 min。本文还探讨了浴室环境改善措施和浴室热舒适的特殊性。 展开更多
关键词 浴室 住宅 热湿环境 洗浴行为 热舒适 夏热冬冷地区 淋浴水温 洗浴频次
下载PDF
固液界面热阻的温度依赖特性模拟研究
20
作者 王军 李海洋 夏国栋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第7期864-871,共8页
基于非平衡态分子动力学模拟方法,研究了系统温度及固液结合强度对固液界面传热的影响规律。模拟结果表明,固液界面热阻随着系统温度的升高而降低,并且亲水性界面的界面热阻温度依赖性较弱。基于微观热流密度计算式的分析表明,随着系统... 基于非平衡态分子动力学模拟方法,研究了系统温度及固液结合强度对固液界面传热的影响规律。模拟结果表明,固液界面热阻随着系统温度的升高而降低,并且亲水性界面的界面热阻温度依赖性较弱。基于微观热流密度计算式的分析表明,随着系统温度升高,动能项和维里项的贡献均逐渐增大,因而固液界面传热增强,但是动能项占比逐渐增大,维里项占比逐渐降低;随着固液结合强度逐渐增大,界面吸附效应增强,维里项贡献明显增大,这是较强的固液相互作用能够强化界面传热的主要原因。 展开更多
关键词 界面热阻 分子动力学模拟 固液界面 温度依赖性 润湿性 微观热流密度
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部