Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As...Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compos...Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.展开更多
Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficu...Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs.展开更多
Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in th...Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in the fields of biomedical electronics. Magnesium and its alloys are strong candidates for biodegradable and implantable conducting materials because of their high conductivity and biocompatibility, in addition to their well-understood dissolution behavior. One critical drawback of Mg and its alloys is their considerably high dissolution rates originating from their low anodic potential, which disturbs the compatibility to biomedical applications. Herein, we introduce a single-phase thin film of a Mg-Zn binary alloy formed by sputtering, which enhances the corrosion resistance of the device electrode, and verify its applicability in biodegradable electronics. The formation of a homogeneous solid solution of single-phase Mg-3Zn was confirmed through X-ray diffraction and transmission electron microscopy. In addition, the dissolution behavior and chemistry was also investigated in various biological fluids by considering the effect of different ion species. Micro-tensile tests showed that the Mg-3Zn alloy electrode exhibited an enhanced yield strain and elongation in relation to a pure Mg electrode. Cell viability test revealed the high biocompatibility rate of the Mg-3Zn binary alloy thin film. Finally, the fabrication of a wireless heater demonstrated the integrability of biodegradable electrodes and highlighted the ability to prolong the lifecycle of thermotherapy-relevant electronics by enhancing the dissolution resistance of the Mg alloy.展开更多
The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)fil...The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.展开更多
As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties a...As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.展开更多
Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The sto...Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The stoichiometry and composition of electroless Sb<sub>2</sub>S<sub>3</sub> thin films were analyzed using XPS depth profile studies. The surface layers were found nearly stoichiometric. On the other hand, the inner layer was rich in antimony composition making it more conductive electrically.展开更多
This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on sod...This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors.The structural and morphological properties of the film were determined.The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac.The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline(amorphous)in nature.The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately,and the EDX spectrum shows the presence of Te,Zn,and O in the film.The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses(0-250 cGy)for all applied voltages(1-6 V).The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm^(2)/Gy.The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0>day 15>day 30>day 1>day 2.These results are expected to be beneficial for fabricating cheap and practical X-ray sensors.展开更多
Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried ...Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.展开更多
Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C fo...Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.展开更多
Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of ...Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.展开更多
Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 fil...Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 films served as the gate insulator layer. We found that the ZnO-TFTs with bottom-gate structure have better electrical performance than those with top-gate structure. The bottom-gate ZnO-TFTs operate as an n-channel enhancement mode, which have clear pinch off and saturation characteristics. The field effect mobility, threshold voltage, and the current on/off ratio were determined to be 18.4cm^2/(V ·s), - 0. 5V and 10^4 , respectively. Meanwhile, the top-gate ZnO-TFTs exhibit n-chan- nel depletion mode operation and no saturation characteristics were detected. The electrical difference of the devices may be due to the different character of the interface between the channel and insulator layers. The two transistors types have high transparency in the visible light region.展开更多
Zinc nitride (Zn3N2) thin films were prepared by radio frequency (RF) magnetron sputtering on quartz glass at different substrate temperatures.The structure and composition were characterized by X-ray diffraction ...Zinc nitride (Zn3N2) thin films were prepared by radio frequency (RF) magnetron sputtering on quartz glass at different substrate temperatures.The structure and composition were characterized by X-ray diffraction and Raman-scattering measurements,respectively.The polycrystalline phase Zn3N2 films appeared when the ratio of the N2 partial pressure to the total pressure reached 1/2.The effects of the substrate temperature on the electrical and optical properties of the Zn3N2 films were investigated by Hall measurements and optical transmission spectra.The electrical and optical properties of the films were highly dependent on the substrate temperature.With the substrate temperature increasing from 100 to 300℃,the resistivity of the Zn3N2 films decreased from 0.49 to 0.023Ω·cm,the carrier concentration increased from 2.7×10^16 to 8.2×10^19cm^-3,and the electron mobility decreased from 115 to 32cm^2/(V·s).The deposited Zn3N2 films were considered to be n-type semiconductors with a direct optical band gap,which was around 1.23eV when the substrate temperature was 200℃.展开更多
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
基金the financial support from the National Key Research and Development Program of China(No.2017YFB0305500)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
基金supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020M3H4A3081867)the industry technology R&D program (20006400) funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)+2 种基金the project number 20010402 funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)the Industry Technology R&D program (#20010371) funded by the Ministry of Trade,Industry and Energy (MOTIE, Republic of Korea)the Technology Innovation Program (20017382) funded By the Ministryof Trade,Industry and Energy (MOTIE, Korea)
文摘Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.
基金supported by National Natural Science Foundation of China(No.U20A20209)Zhejiang Provincial Natural Science Foundation of China(LD19E020001)+1 种基金Zhejiang Provincial Key Research and Development Program(2021C01030)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(2021C01SA301612)。
文摘Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs.
基金supported by the Renewable Energy Technology Development (Develop technology to enhance reliability and durability for parts of hydrogen storage tank system) (2022303004020B) grant funded by the Korea Energy Technology Evaluation Planning (KETEP)the Ministry of Science and ICT (Development Project for Emerging Research Instruments Technology),(Project Number: (2022)ERIC)06_1Commercialization Promotion Agency for R&D Outcomes (COMPA)。
文摘Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in the fields of biomedical electronics. Magnesium and its alloys are strong candidates for biodegradable and implantable conducting materials because of their high conductivity and biocompatibility, in addition to their well-understood dissolution behavior. One critical drawback of Mg and its alloys is their considerably high dissolution rates originating from their low anodic potential, which disturbs the compatibility to biomedical applications. Herein, we introduce a single-phase thin film of a Mg-Zn binary alloy formed by sputtering, which enhances the corrosion resistance of the device electrode, and verify its applicability in biodegradable electronics. The formation of a homogeneous solid solution of single-phase Mg-3Zn was confirmed through X-ray diffraction and transmission electron microscopy. In addition, the dissolution behavior and chemistry was also investigated in various biological fluids by considering the effect of different ion species. Micro-tensile tests showed that the Mg-3Zn alloy electrode exhibited an enhanced yield strain and elongation in relation to a pure Mg electrode. Cell viability test revealed the high biocompatibility rate of the Mg-3Zn binary alloy thin film. Finally, the fabrication of a wireless heater demonstrated the integrability of biodegradable electrodes and highlighted the ability to prolong the lifecycle of thermotherapy-relevant electronics by enhancing the dissolution resistance of the Mg alloy.
基金financially supported by National Natural Science Foundation of China(Nos.12075054,12205040,12175036,11875104)。
文摘The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.
文摘As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.
文摘Sb<sub>2</sub>S<sub>3</sub> has gained tremendous research recently for thin film solar cell absorber material because of their easy synthesis, unique electrical and optical properties. The stoichiometry and composition of electroless Sb<sub>2</sub>S<sub>3</sub> thin films were analyzed using XPS depth profile studies. The surface layers were found nearly stoichiometric. On the other hand, the inner layer was rich in antimony composition making it more conductive electrically.
文摘This study reports the dosimetric response of a(ZnO)_(0.2)(TeO_(2))_(0.8)thin film sensor irradiated with high-energy X-ray radiation at various doses.The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors.The structural and morphological properties of the film were determined.The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac.The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline(amorphous)in nature.The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately,and the EDX spectrum shows the presence of Te,Zn,and O in the film.The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses(0-250 cGy)for all applied voltages(1-6 V).The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm^(2)/Gy.The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0>day 15>day 30>day 1>day 2.These results are expected to be beneficial for fabricating cheap and practical X-ray sensors.
文摘Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.
文摘Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.
基金supported by open research fund from Guangxi Key Laboratory of New Energy and Building Energy Saving, China
文摘Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.
文摘Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 films served as the gate insulator layer. We found that the ZnO-TFTs with bottom-gate structure have better electrical performance than those with top-gate structure. The bottom-gate ZnO-TFTs operate as an n-channel enhancement mode, which have clear pinch off and saturation characteristics. The field effect mobility, threshold voltage, and the current on/off ratio were determined to be 18.4cm^2/(V ·s), - 0. 5V and 10^4 , respectively. Meanwhile, the top-gate ZnO-TFTs exhibit n-chan- nel depletion mode operation and no saturation characteristics were detected. The electrical difference of the devices may be due to the different character of the interface between the channel and insulator layers. The two transistors types have high transparency in the visible light region.
文摘Zinc nitride (Zn3N2) thin films were prepared by radio frequency (RF) magnetron sputtering on quartz glass at different substrate temperatures.The structure and composition were characterized by X-ray diffraction and Raman-scattering measurements,respectively.The polycrystalline phase Zn3N2 films appeared when the ratio of the N2 partial pressure to the total pressure reached 1/2.The effects of the substrate temperature on the electrical and optical properties of the Zn3N2 films were investigated by Hall measurements and optical transmission spectra.The electrical and optical properties of the films were highly dependent on the substrate temperature.With the substrate temperature increasing from 100 to 300℃,the resistivity of the Zn3N2 films decreased from 0.49 to 0.023Ω·cm,the carrier concentration increased from 2.7×10^16 to 8.2×10^19cm^-3,and the electron mobility decreased from 115 to 32cm^2/(V·s).The deposited Zn3N2 films were considered to be n-type semiconductors with a direct optical band gap,which was around 1.23eV when the substrate temperature was 200℃.