Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinom...Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.展开更多
BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside s...BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit...A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.展开更多
The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estima...The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p...Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.展开更多
BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign...BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
This article provides a discussion and commentary around the recent advances in arthroscopic anterior cruciate ligament reconstruction(ACLR),with a focus on the aspects of lateral femoral tunnel preparation and graft ...This article provides a discussion and commentary around the recent advances in arthroscopic anterior cruciate ligament reconstruction(ACLR),with a focus on the aspects of lateral femoral tunnel preparation and graft fixation techniques.The paper explores and comments on a recently published review by Dai et al,titled"Research progress on preparation of lateral femoral tunnel and graft fixation in ACLR",while providing insight into its relevance within the field of ACLR,and recommendations for future research.展开更多
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe...Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.展开更多
Adult patients with developmental dysplasia of the hip develop secondary osteoarthritis and eventually end up with total hip arthroplasty(THA) at younger age. Because of altered anatomy of dysplastic hips, THA in thes...Adult patients with developmental dysplasia of the hip develop secondary osteoarthritis and eventually end up with total hip arthroplasty(THA) at younger age. Because of altered anatomy of dysplastic hips, THA in these patients represents technically demanding procedure. Distorted anatomy of the acetabulum and proximal femur together with conjoined leg length discrepancy present major challenges during performing THA in patients with developmental dysplasia of the hip. In addition, most patients are at younger age, therefore, soft tissue balance is of great importance(especially the need to preserve the continuity of abductors) to maximise postoperative functional result. In this paper we present a variety of surgical techniques availablefor THA in dysplastic hips, their advantages and disadvantages. For acetabular reconstruction following techniques are described: Standard metal augments(prefabricated), Custom made acetabular augments(3D printing), Roof reconstruction with vascularized fibula, Roof reconstruction with pedicled iliac graft, Roof reconstruction with autologous bone graft, Roof reconstruction with homologous bone graft, Roof reconstruction with auto/homologous spongious bone, Reinforcement ring with the hook in combination with autologous graft augmentation, Cranial positioning of the acetabulum, Medial protrusion technique(cotyloplasty) with chisel, Medial protrusion technique(cotyloplasty) with reaming, Cotyloplasty without spongioplasty. For femoral reconstruction following techniques were described: Distraction with external fixator, Femoral shortening through a modified lateral approach, Transtrochanteric osteotomies, Paavilainen osteotomy, Lesser trochanter osteotomy, Double-chevron osteotomy, Subtrochanteric osteotomies, Diaphyseal osteotomies, Distal femoral osteotomies. At the end we present author's treatment method of choice: for acetabulum we perform cotyloplasty leaving only paper-thin medial wall, which we break during acetabular cup impacting. For femoral side first we peel of all rotators and posterior part of gluteus medius and vastus lateralis from greater trochanter on the very thin flake of bone. This method allows us to adequately shorten proximal femoral stump, with possibility of additional resection of proximal femur. Furthermore, several advantages and disadvantages of this procedure are also discussed.展开更多
An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentrati...An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to De...This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.展开更多
基金This project was supported by a grant from the Natural Science Foundation of Hubei Province (No. 2002AB130)
文摘Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.
文摘BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金supported by the National Natural Science Foundation of China (No. 12220101005)Natural Science Foundation of Jiangsu Province (No. BK20220132)+2 种基金Primary Research and Development Plan of Jiangsu Province (No. BE2019002-3)Fundamental Research Funds for Central Universities (No. NG2022004)the Foundation of the Graduate Innovation Center in NUAA (No. xcxjh20210613)。
文摘A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
基金supported by the Tsinghua University 2021 Doctoral Summer Projectsupported by the National Key R&D Program of China (No. 2018YFE0301102)National Natural Science Foundation of China (Nos. 11875020 and 11875023)。
文摘The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
文摘Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
文摘BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
文摘This article provides a discussion and commentary around the recent advances in arthroscopic anterior cruciate ligament reconstruction(ACLR),with a focus on the aspects of lateral femoral tunnel preparation and graft fixation techniques.The paper explores and comments on a recently published review by Dai et al,titled"Research progress on preparation of lateral femoral tunnel and graft fixation in ACLR",while providing insight into its relevance within the field of ACLR,and recommendations for future research.
文摘Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.
文摘Adult patients with developmental dysplasia of the hip develop secondary osteoarthritis and eventually end up with total hip arthroplasty(THA) at younger age. Because of altered anatomy of dysplastic hips, THA in these patients represents technically demanding procedure. Distorted anatomy of the acetabulum and proximal femur together with conjoined leg length discrepancy present major challenges during performing THA in patients with developmental dysplasia of the hip. In addition, most patients are at younger age, therefore, soft tissue balance is of great importance(especially the need to preserve the continuity of abductors) to maximise postoperative functional result. In this paper we present a variety of surgical techniques availablefor THA in dysplastic hips, their advantages and disadvantages. For acetabular reconstruction following techniques are described: Standard metal augments(prefabricated), Custom made acetabular augments(3D printing), Roof reconstruction with vascularized fibula, Roof reconstruction with pedicled iliac graft, Roof reconstruction with autologous bone graft, Roof reconstruction with homologous bone graft, Roof reconstruction with auto/homologous spongious bone, Reinforcement ring with the hook in combination with autologous graft augmentation, Cranial positioning of the acetabulum, Medial protrusion technique(cotyloplasty) with chisel, Medial protrusion technique(cotyloplasty) with reaming, Cotyloplasty without spongioplasty. For femoral reconstruction following techniques were described: Distraction with external fixator, Femoral shortening through a modified lateral approach, Transtrochanteric osteotomies, Paavilainen osteotomy, Lesser trochanter osteotomy, Double-chevron osteotomy, Subtrochanteric osteotomies, Diaphyseal osteotomies, Distal femoral osteotomies. At the end we present author's treatment method of choice: for acetabulum we perform cotyloplasty leaving only paper-thin medial wall, which we break during acetabular cup impacting. For femoral side first we peel of all rotators and posterior part of gluteus medius and vastus lateralis from greater trochanter on the very thin flake of bone. This method allows us to adequately shorten proximal femoral stump, with possibility of additional resection of proximal femur. Furthermore, several advantages and disadvantages of this procedure are also discussed.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205151)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2014YQ060537)the National Basic Research Program,China(Grant No.2013CB632803)
文摘An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.