The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized li...The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.展开更多
Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high...Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high spatial resolution and large depth.Herein,we carried three-photon imaging of LDs in fat liver.Owing to the large three-photon absorption cross-section of the luminogen named NAP-CF_(3)(1:67×10^(-79) cm^(6) s^(2)),three-photon fluorescence fat liver imaging reached the largest depth of 80μm.Fat liver diagnosis was successfully carried out with excellent performance,providing great potential for LDs-associated pathologies research.展开更多
In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average p...In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process.展开更多
A novel organic chromophore 4, 4'-bis(9-carbazyl-trans-styryl)-biphenyl (BCSBP) has been synthesized and characterized by IHNMR and elemental analysis. Three-photon absorption(3PA) induced upconvention fluoresc...A novel organic chromophore 4, 4'-bis(9-carbazyl-trans-styryl)-biphenyl (BCSBP) has been synthesized and characterized by IHNMR and elemental analysis. Three-photon absorption(3PA) induced upconvention fluorescence was observed and large 3PA cross section as high as 10^-74 cm^6 s^2 was obtained for nanosecond laser pulses at 1064 nm from optical limiting measurements.展开更多
Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the...Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging.展开更多
A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence...A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.展开更多
We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two ...We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two intermediate levels,and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency(EIT).Nonlinear spectra are detected as a function of coupling laser frequency.The observed spectra exhibit an enhanced absorption(EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission(ET) signals at detunings to the transition.We define the enhanced absorption(transmission) strength,HEA(HET),and distance between two ET peaks,γET,to describe the spectral feature of the four-level atoms.The enhanced absorption signal HEA is found to have a maximum value when we vary the dressing laser Rabi frequency Ωd,corresponding Rabi frequency is defined as a separatrix point,ΩdSe.The values of ΩdSe and further η=ΩdSe/Ωc are found to depend on the probe and coupling Rabi frequency but not the atomic density.Based on ΩdSe,the spectra can be separated into two regimes,weak and strong dressing ranges,Ωd≤ΩdSe and Ωd≥QdSe,respectively.The spectroscopies display different features at these two regimes.A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.展开更多
The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in ...The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152×10^-78cm^6s^2 and 139× 10^-78cm^6s^2, respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.展开更多
We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorpti...We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorption spectra can be dramatically influenced due to the intensities of the coupling field and pump field changing under the three-photon resonance condition. The effect of the frequency detuning of the pump field on the three-photon absorption spectra is also discussed. The study in our case is much more practical than the study in the case of its atomic counterpart in the sense of flexible design and the wide adjustable parameters. Thus it may open up some new possibilities for technological applications in optoelectronics and solid-state quantum information science.展开更多
Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in ...Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in chromophores by the enhancement in the dipole moment between the ground and excited states. The properties of optical power limiting induced by three-photon absorption (3PA) are demonstrated. Large 3PA coefficients and the corresponding molecular cross sections as high as 10^-74 cm^6s^2 were obtained for nanosecond laser pulses at 1.06μm from nonlinear transmission measurements.展开更多
Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretic...Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.展开更多
White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imagi...White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imaging in animal models in vivo.The third harmonic generation(THG)signal can be generated from white matter,but the bottom part of the white matter layer generates weak THG due to its high scattering.Here,we demonstrate an in vivo labeling and imaging technology,capable of visualizing the white matter layer in the mouse brain,combining°uorescence labeling with MitoTracker Red and three-photon°uorescence(3PF)microscopy excited at the 1700 nm window.3PF signals are several times higher than THG signals,resulting in deeper imaging of the white matter layer with the former.Our results indicate that 3PF microscopy is a promising technology for white matter imaging in the deep brain in vivo.展开更多
It is of great significance to study the brain structure and function in deep-tissue for neuroscience research and bio-medical applications because of the urgent demand for precise theranostics.Three-photon fluorescen...It is of great significance to study the brain structure and function in deep-tissue for neuroscience research and bio-medical applications because of the urgent demand for precise theranostics.Three-photon fluorescence microscopic(3PFM)bioimaging excited by the light in near-infrared IIb(NIR-IIb,1,500–1,700 nm)spectral region is one of the most promising imaging techniques with the advantages of high spatial resolution,large imaging depth,and reduced scattering.Herein,a type of NIR-IIb light excitable deep-red emissive semiconducting polymer dots(P-dots)with bright 3PF and large three-photon absorption cross-section(σ3)at 1,550 nm was prepared.Then the P-dots were functionalized with polystyrene polymer polystyrene graft ethylene oxide functionalized with carboxyl groups(PS-PEG-COOH)and modified with NH2-poly(ethylene glycol)(PEG)to synthesis photochemically stable and biocompatible P-dots nanoparticles(NPs).Further the P-dots NPs were utilized for in vivo 3PFM bioimaging of cerebral vasculature with and without the brain skull under 1,550 nm femtosecond(fs)laser excitation.In vivo 3PFM bioimaging of the mice cerebral vasculature at various vertical depths was obtained.Moreover,a vivid three-dimensional structure of the mice vascular architecture beneath the skull was reconstructed.At the depth of 350μm beneath the brain skull,3.8μm blood vessels could still be clearly recognized.NIR-IIb excitable P-dots assisted 3PFM bioimaging has great potential in accurate deep tissue bioimaging.展开更多
Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy ...Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy is an important tool for bioimaging since it possesses the ability to penetrate deep into biological tissues. Herein, we used AIE luminogen together with multiphoton microscopy for long-term imaging of zebrafish. A typical AIE luminogen, 2,3-bis(4-(phenyl(4- (1,Z2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), was encapsulated with 1,2-distearoyl-sn-glycero-3-phosphoethanola-mine-N- [methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) to form nanodots that exhibited bright three-photon fluorescence under 1,560 nm-femtosecond (fs) laser excitation. The TTF-nanodots were chemically stable in a wide range of pH values and showed no in vivo toxicity in zebrafish according to a series of biological tests. The TTF-nanodots were microinjected into zebrafish embryos, and the different growth stages of the labeled embryos were monitored with a three-photon fluorescence microscope. TTF-nanodots could be traced inside the zebrafish body for as long as 120 hours. In addition, the TTF-nanodots were utilized to target the blood vessel of zebrafish, and three-photon fluorescence angiogram was performed. More importantly, these nanodots were highly resistant to photobleaching under 1,560 nm-fs excitation, allowing long-term imaging of zebrafish.展开更多
Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF grou...Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF group was measured by the nonlinear transmission method using a femto-second Ti:Sapphire oscillator-amplifier laser system.Its three-photon absorption cross-sections at 1300 ran were 36.8×10^-79 cm^6 s^2 in the solution of DMF and 12.3×10^-79 cm^6 s^2 in the solution of CH_2Cl_2,respectively.The large values were got by experiments in this paper,which is a new exploration for these kinds of materials.The molecule has the potential application foreground of 3PA areas and optical power limiting.展开更多
Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two-and three-photon microscopy.Excitation of chromophores as diverse as channelrhodopsins a...Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two-and three-photon microscopy.Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown,and a penetration depth of more than 700μm into fixed scattering brain tissue is achieved,approximately twice as deep as that achieved using two-photon wide-field excitation.Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse;a complete focal stack was obtained without any evidence of photodamage.As an additional validation of the utility of wide-field three-photon excitation,functional excitation is demonstrated by performing threephoton optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin;action potentials could reliably be excited without causing photodamage.展开更多
Genetic labeling techniques allow for noninvasive lineage tracing of cells in vivo.Two-photon inducible activators provide spatial resolution for superficial cells,but labeling cells located deep within tissues is pre...Genetic labeling techniques allow for noninvasive lineage tracing of cells in vivo.Two-photon inducible activators provide spatial resolution for superficial cells,but labeling cells located deep within tissues is precluded by scattering of the far-red illumination required for two-photon photolysis.Three-photon illumination has been shown to overcome the limitations of two-photon microscopy for in vivo imaging of deep structures,but whether it can be used for photoactivation remains to be tested.Here we show,both theoretically and experimentally,that three-photon illumination overcomes scattering problems by combining longer wavelength excitation with high uncaging three-photon cross-section molecules.We prospectively labeled heart muscle cells in zebrafish embryos and found permanent labeling in their progeny in adult animals with negligible tissue damage.This technique allows for a noninvasive genetic manipulation in vivo with spatial,temporal and cell-type specificity,and may have wide applicability in experimental biology.展开更多
基金supported by the Fundamental Re-search Funds for the Central Universities(HYGJXM202309).
文摘The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.
基金supported by National Natural Science Foundation of China (61975172,82001874,62105184)the Guangdong Basic and Applied Basic Research Foundation (2020A1515110578).
文摘Lipid droplets(LDs)participate in many physiological processes,the abnormality of which will cause chronic diseases and pathologies such as diabetes and obesity.It is crucial to monitor the distribution of LDs at high spatial resolution and large depth.Herein,we carried three-photon imaging of LDs in fat liver.Owing to the large three-photon absorption cross-section of the luminogen named NAP-CF_(3)(1:67×10^(-79) cm^(6) s^(2)),three-photon fluorescence fat liver imaging reached the largest depth of 80μm.Fat liver diagnosis was successfully carried out with excellent performance,providing great potential for LDs-associated pathologies research.
基金supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province (Grant Nos. 07JJ3013 and 07JJ5003)the Research Foundation of the Education Bureau of Hunan Province(Grant No. 06A038)
文摘In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process.
基金This work was supported by the National Natural Science Foundation of China(No:50025309,and No:90201016).
文摘A novel organic chromophore 4, 4'-bis(9-carbazyl-trans-styryl)-biphenyl (BCSBP) has been synthesized and characterized by IHNMR and elemental analysis. Three-photon absorption(3PA) induced upconvention fluorescence was observed and large 3PA cross section as high as 10^-74 cm^6 s^2 was obtained for nanosecond laser pulses at 1064 nm from optical limiting measurements.
基金supported by National Natural Science Foundation of China(61735016)Zhejiang Provincial Natural Science Foundation of China(LR17F050001).
文摘Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging.
基金supported by the Education Department of Zhejiang Province (20050359)
文摘A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the State Key Program of the National Natural Science of China(Grant Nos.11434007 and 61835007)+1 种基金the National Natural Science Foundation of China(Grant Nos.61675123,61775124,and 11804202)the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT 17R70).
文摘We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two intermediate levels,and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency(EIT).Nonlinear spectra are detected as a function of coupling laser frequency.The observed spectra exhibit an enhanced absorption(EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission(ET) signals at detunings to the transition.We define the enhanced absorption(transmission) strength,HEA(HET),and distance between two ET peaks,γET,to describe the spectral feature of the four-level atoms.The enhanced absorption signal HEA is found to have a maximum value when we vary the dressing laser Rabi frequency Ωd,corresponding Rabi frequency is defined as a separatrix point,ΩdSe.The values of ΩdSe and further η=ΩdSe/Ωc are found to depend on the probe and coupling Rabi frequency but not the atomic density.Based on ΩdSe,the spectra can be separated into two regimes,weak and strong dressing ranges,Ωd≤ΩdSe and Ωd≥QdSe,respectively.The spectroscopies display different features at these two regimes.A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.
基金Project supported by the National Natural Science Foundation of China (Grant No 60207005) and the Shanghai Science & Technology Development Foundation (Grant No 012261068).
文摘The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152×10^-78cm^6s^2 and 139× 10^-78cm^6s^2, respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.
基金Project supported by the Natural Science Foundation of Jiangxi,China (Grant No. 2008GQW0017)the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ09504)the Foundation of Talent of Jinggang of Jiangxi Province,China (Grant No. 2008DQ00400)
文摘We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorption spectra can be dramatically influenced due to the intensities of the coupling field and pump field changing under the three-photon resonance condition. The effect of the frequency detuning of the pump field on the three-photon absorption spectra is also discussed. The study in our case is much more practical than the study in the case of its atomic counterpart in the sense of flexible design and the wide adjustable parameters. Thus it may open up some new possibilities for technological applications in optoelectronics and solid-state quantum information science.
基金This work was supported by the National Natural Science Foundation of China (No.90201016).
文摘Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in chromophores by the enhancement in the dipole moment between the ground and excited states. The properties of optical power limiting induced by three-photon absorption (3PA) are demonstrated. Large 3PA coefficients and the corresponding molecular cross sections as high as 10^-74 cm^6s^2 were obtained for nanosecond laser pulses at 1.06μm from nonlinear transmission measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.12004238 and 11764036)the Natural Science Foundation of Henan Province,China(Grant No.222102230068)the Open Subject of the Key Laboratory of Weak Light Nonlinear Photonics of Nankai University(Grant No.OS 21-3)。
文摘Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.
基金funded by the National Natural Science Foundation of China(62075135,61975126)Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020).
文摘White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imaging in animal models in vivo.The third harmonic generation(THG)signal can be generated from white matter,but the bottom part of the white matter layer generates weak THG due to its high scattering.Here,we demonstrate an in vivo labeling and imaging technology,capable of visualizing the white matter layer in the mouse brain,combining°uorescence labeling with MitoTracker Red and three-photon°uorescence(3PF)microscopy excited at the 1700 nm window.3PF signals are several times higher than THG signals,resulting in deeper imaging of the white matter layer with the former.Our results indicate that 3PF microscopy is a promising technology for white matter imaging in the deep brain in vivo.
基金This work was supported by the National Natural Science Foundation of China(Nos.61735016,61975172,and 91632105)Zhejiang Provincial Natural Science Foundation of China(Nos.LR17F050001 and LY17C090005)the Fundamental Research Funds for the Central Universities and State Key Laboratory of Pathogenesis,Prevention and Treatment of High Incidence Diseases in Central Asia Fund(No.SKL-HIDCA-2019-3).
文摘It is of great significance to study the brain structure and function in deep-tissue for neuroscience research and bio-medical applications because of the urgent demand for precise theranostics.Three-photon fluorescence microscopic(3PFM)bioimaging excited by the light in near-infrared IIb(NIR-IIb,1,500–1,700 nm)spectral region is one of the most promising imaging techniques with the advantages of high spatial resolution,large imaging depth,and reduced scattering.Herein,a type of NIR-IIb light excitable deep-red emissive semiconducting polymer dots(P-dots)with bright 3PF and large three-photon absorption cross-section(σ3)at 1,550 nm was prepared.Then the P-dots were functionalized with polystyrene polymer polystyrene graft ethylene oxide functionalized with carboxyl groups(PS-PEG-COOH)and modified with NH2-poly(ethylene glycol)(PEG)to synthesis photochemically stable and biocompatible P-dots nanoparticles(NPs).Further the P-dots NPs were utilized for in vivo 3PFM bioimaging of cerebral vasculature with and without the brain skull under 1,550 nm femtosecond(fs)laser excitation.In vivo 3PFM bioimaging of the mice cerebral vasculature at various vertical depths was obtained.Moreover,a vivid three-dimensional structure of the mice vascular architecture beneath the skull was reconstructed.At the depth of 350μm beneath the brain skull,3.8μm blood vessels could still be clearly recognized.NIR-IIb excitable P-dots assisted 3PFM bioimaging has great potential in accurate deep tissue bioimaging.
基金This work was supported by the National Basic Research Program of China (973 Program) (No. 2013CB834704), the National Natural Science Foundation of China (No. 61275190), the Program of Zhejiang Leading Team of Science and Technology Innovation (No. 2010R50007), the Fundamental Research Funds for the Central Universities, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), and the Research Grants Council of Hong Kong (No. HKUST2/CRF/10).
文摘Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy is an important tool for bioimaging since it possesses the ability to penetrate deep into biological tissues. Herein, we used AIE luminogen together with multiphoton microscopy for long-term imaging of zebrafish. A typical AIE luminogen, 2,3-bis(4-(phenyl(4- (1,Z2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), was encapsulated with 1,2-distearoyl-sn-glycero-3-phosphoethanola-mine-N- [methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) to form nanodots that exhibited bright three-photon fluorescence under 1,560 nm-femtosecond (fs) laser excitation. The TTF-nanodots were chemically stable in a wide range of pH values and showed no in vivo toxicity in zebrafish according to a series of biological tests. The TTF-nanodots were microinjected into zebrafish embryos, and the different growth stages of the labeled embryos were monitored with a three-photon fluorescence microscope. TTF-nanodots could be traced inside the zebrafish body for as long as 120 hours. In addition, the TTF-nanodots were utilized to target the blood vessel of zebrafish, and three-photon fluorescence angiogram was performed. More importantly, these nanodots were highly resistant to photobleaching under 1,560 nm-fs excitation, allowing long-term imaging of zebrafish.
基金the National Natural Science Foundation of China(No.61178057)for financial support
文摘Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF group was measured by the nonlinear transmission method using a femto-second Ti:Sapphire oscillator-amplifier laser system.Its three-photon absorption cross-sections at 1300 ran were 36.8×10^-79 cm^6 s^2 in the solution of DMF and 12.3×10^-79 cm^6 s^2 in the solution of CH_2Cl_2,respectively.The large values were got by experiments in this paper,which is a new exploration for these kinds of materials.The molecule has the potential application foreground of 3PA areas and optical power limiting.
基金support from NIH-5-P41-EB015871-27,DP3-DK10102401,1-U01-NS090438-01,1-R01-EY017656-0,6A1,1-R01-HL121386-01A1the Biosym IRG of Singapore-MIT Alliance Research and Technology Center+6 种基金the Koch Institute for Integrative Cancer Research Bridge Initiativethe Hamamatsu Inc.,and the Samsung GRO programsupported by the Wellcome Trust 093831/Z/10/Zfunding from NIH 1R24MH106075,NIH 2R01DA029639,NIH 1R01MH103910,NIH 1R01GM104948,the MIT Media Lab,the New York Stem Cell Foundation-Robertson Award and NSF CBET 1053233an EMBO Longterm Fellowship to carry out this researchsupport from NIH 5U54 CA151884-04 and 9-P41-EB015871-26A1for NCI grants R35 CA197743 and P01 CA080124 to carry out this work.
文摘Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two-and three-photon microscopy.Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown,and a penetration depth of more than 700μm into fixed scattering brain tissue is achieved,approximately twice as deep as that achieved using two-photon wide-field excitation.Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse;a complete focal stack was obtained without any evidence of photodamage.As an additional validation of the utility of wide-field three-photon excitation,functional excitation is demonstrated by performing threephoton optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin;action potentials could reliably be excited without causing photodamage.
基金supported by a pre-doctoral fellowship from MINECO and the I3 program,respectivelysupport was provided by grants from MINECO(SAF2012-33526,SAF2015-69706-R and BFU2012-38146)+3 种基金ISCIII/FEDER(Red de Terapia Celular—TerCel RD12/0019/0019)AGAUR(2014-SGR-1460)FundacióLa Maratóde TV3(201534-30)ERC(Grant Agreement 242993).
文摘Genetic labeling techniques allow for noninvasive lineage tracing of cells in vivo.Two-photon inducible activators provide spatial resolution for superficial cells,but labeling cells located deep within tissues is precluded by scattering of the far-red illumination required for two-photon photolysis.Three-photon illumination has been shown to overcome the limitations of two-photon microscopy for in vivo imaging of deep structures,but whether it can be used for photoactivation remains to be tested.Here we show,both theoretically and experimentally,that three-photon illumination overcomes scattering problems by combining longer wavelength excitation with high uncaging three-photon cross-section molecules.We prospectively labeled heart muscle cells in zebrafish embryos and found permanent labeling in their progeny in adult animals with negligible tissue damage.This technique allows for a noninvasive genetic manipulation in vivo with spatial,temporal and cell-type specificity,and may have wide applicability in experimental biology.