Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the...The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.展开更多
While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several feat...While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several features of nuclei and nuclear phenomena, which can be a useful mean during the teaching of nuclear physics. Even though such macroscopic models are unable to depict the true quantum physical nature of nuclear processes, they can be much more useful didactically than the previously used disordered sets of balls, to represent the atomic nucleus.展开更多
硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响...硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响,因此探究不同Li_(3)PS_(4)晶体结构的合成条件及其转变过程对固态电解质的应用有重要意义.本文通过原位变温Raman和室温X射线衍射(XRD)分析发现,通过球磨法所得glass-Li_(3)PS_(4)在首次升温过程中(240℃)优先转变为亚稳态的β-Li_(3)PS_(4),此时冷却到室温能保持β相结构,并具有较高的离子电导率(0.65 mS cm^(-1)).当烧结温度继续升高(>480℃),β相会转变为离子电导率更高但热力学不稳定的α-Li_(3)PS_(4),在后续的降温过程中,α相会直接转变为热力学更稳定但离子电导率差的γ-Li_(3)PS_(4).此外,γ-Li_(3)PS_(4)和β-Li_(3)PS_(4)具有一定的结构记忆效应,即使经历二次低温烧结后(240℃)也能维持其固有的结构.以上结果表明,首次烧结温度对于Li_(3)PS_(4)材料的结构和离子电导率具有重要的影响,合理控制烧结温度能够成功制备出具有更高离子电导率的β-Li_(3)PS_(4)固态电解质.此外,所制备的β-Li_(3)PS_(4)固态电解质对锂表现出相对优异的界面性能.展开更多
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
文摘The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.
文摘While experimenting with the more and more popular neodymium magnetic ball sets, the author developed a method, by which models of atomic nuclei can be created. These macroscopic models visually represent several features of nuclei and nuclear phenomena, which can be a useful mean during the teaching of nuclear physics. Even though such macroscopic models are unable to depict the true quantum physical nature of nuclear processes, they can be much more useful didactically than the previously used disordered sets of balls, to represent the atomic nucleus.
文摘硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响,因此探究不同Li_(3)PS_(4)晶体结构的合成条件及其转变过程对固态电解质的应用有重要意义.本文通过原位变温Raman和室温X射线衍射(XRD)分析发现,通过球磨法所得glass-Li_(3)PS_(4)在首次升温过程中(240℃)优先转变为亚稳态的β-Li_(3)PS_(4),此时冷却到室温能保持β相结构,并具有较高的离子电导率(0.65 mS cm^(-1)).当烧结温度继续升高(>480℃),β相会转变为离子电导率更高但热力学不稳定的α-Li_(3)PS_(4),在后续的降温过程中,α相会直接转变为热力学更稳定但离子电导率差的γ-Li_(3)PS_(4).此外,γ-Li_(3)PS_(4)和β-Li_(3)PS_(4)具有一定的结构记忆效应,即使经历二次低温烧结后(240℃)也能维持其固有的结构.以上结果表明,首次烧结温度对于Li_(3)PS_(4)材料的结构和离子电导率具有重要的影响,合理控制烧结温度能够成功制备出具有更高离子电导率的β-Li_(3)PS_(4)固态电解质.此外,所制备的β-Li_(3)PS_(4)固态电解质对锂表现出相对优异的界面性能.