The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a ...The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.展开更多
A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was inve...A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.展开更多
A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed cry...A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.展开更多
Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V...Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V alloy, and the effects of Si-addition on the microstructure and properties of the as-cast and swaged alloys were investigated. Hot swaging at 900 °C was performed on the cast samples and then two different thermal treatments were applied. The first treatment was done by heating the swaged samples at 1050 °C to produce fine lamella structure, while the second treatment was carried out at 1050 °C and then decreased the temperature to 800 °C for getting coarse lamella structure. An addition of 0.5% Si to Ti-6Al-4V alloy decreased the grain size of the as-cast sample from 627 to 337 μm. There was an increase in ultimate tensile strength of about 25 MPa for the as-cast Ti-6Al-4V 0.5Si alloy compared to Ti-6Al-4V due to the refinement effect caused by Si addition. A maximum ultimate tensile strength of 1380 MPa and a minimum corrosion rate (1.35×10 6 mm/a in Hank’s solution and 5.78×10 4 mm/a in NaCl solution) were reported for the heat treated fine lamella structure of Ti-6Al-4V 0.5Si alloy. The wear rate was decreased to about 50% by adding 0.5% Si at low sliding speeds and to about 73% at high sliding speeds.展开更多
基金Project(50771086) supported by the National Natural Science Foundation of ChinaProject(NCET) supported by Program for New Century Excellent Talents in University, China+1 种基金Project(NCETFJ) supported by Program for New Century Excellent Talents in Fujian Province University, ChinaProject(2009H0039) supported by Fujian Provincial Department of Science and Technology, China
文摘The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.
文摘A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.
基金Project(DUT15JJ(G)01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2009AA03Z525) supported by the National High-tech Research and Development Program of China
文摘A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.
文摘Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V alloy, and the effects of Si-addition on the microstructure and properties of the as-cast and swaged alloys were investigated. Hot swaging at 900 °C was performed on the cast samples and then two different thermal treatments were applied. The first treatment was done by heating the swaged samples at 1050 °C to produce fine lamella structure, while the second treatment was carried out at 1050 °C and then decreased the temperature to 800 °C for getting coarse lamella structure. An addition of 0.5% Si to Ti-6Al-4V alloy decreased the grain size of the as-cast sample from 627 to 337 μm. There was an increase in ultimate tensile strength of about 25 MPa for the as-cast Ti-6Al-4V 0.5Si alloy compared to Ti-6Al-4V due to the refinement effect caused by Si addition. A maximum ultimate tensile strength of 1380 MPa and a minimum corrosion rate (1.35×10 6 mm/a in Hank’s solution and 5.78×10 4 mm/a in NaCl solution) were reported for the heat treated fine lamella structure of Ti-6Al-4V 0.5Si alloy. The wear rate was decreased to about 50% by adding 0.5% Si at low sliding speeds and to about 73% at high sliding speeds.