The Ti6Al4V-Cu alloy was reported to show good antibacterial properties, which was promising to reduce the hazard of the bacterial infection problem. For the purpose of preparing Ti6Al4V-Cu alloy with satisfied compre...The Ti6Al4V-Cu alloy was reported to show good antibacterial properties, which was promising to reduce the hazard of the bacterial infection problem. For the purpose of preparing Ti6Al4V-Cu alloy with satisfied comprehensive properties, it’s important to study the heat treatment and the appropriate Cu content of the alloy. In this study, high Cu content Ti6Al4V-x Cu(x = 4.5, 6, 7.5 wt%) alloys were prepared, and firstly the annealing heat treatments were optimized in the α+β+Ti2Cu triple phase region to obtain satisfied tensile mechanical properties. Then the effect of Cu content on the tribological property, corrosion resistance, antibacterial activity and cytotoxicity of the Ti6Al4 V-x Cu alloys were systematically studied to obtain the appropriate Cu content. The results showed that the optimal annealing temperatures for Ti6Al4 V-x Cu(x = 4.5, 6, 7.5 wt%) alloys were 720, 740 and 760℃, respectively, which was resulted from the proper volume fractions of α,β and Ti2Cu phases in the microstructure. The additions of 4.5 wt% and 6 wt% Cu into the medical Ti6Al4 V alloy could enhance the wear resistance and corrosion resistance of the alloy, but the addition of 7.5 wt% Cu showed an opposite effect. With the increase of the Cu content, the antibacterial property was enhanced due to the increased volume fraction of Ti2Cu phase in the microstructure, but when the Cu content was increased to 7.5 wt%, cytotoxicity was presented. A medium Cu content of 6 wt%, with annealing temperature of 740℃ make the alloy possesses the best comprehensive properties of tensile properties, wear resistance, corrosion resistance, antibacterial property and biocompatibility, which is promising for future medical applications.展开更多
基金financially supported by the National Key Research and Development Program of China (Nos. 2018YFC1106600 and 2016YFC1100600)the Innovation Fund Project of Institute of Metal Research, Chinese Academy of Sciences (No. 2017-ZD01)+1 种基金the National Natural Science Foundation (Nos. 51631009 and 51811530320)Key Projects for Foreign Cooperation of Bureau of International Cooperation Chinese Academy of Sciences (No. 174321KYSB2018000)
文摘The Ti6Al4V-Cu alloy was reported to show good antibacterial properties, which was promising to reduce the hazard of the bacterial infection problem. For the purpose of preparing Ti6Al4V-Cu alloy with satisfied comprehensive properties, it’s important to study the heat treatment and the appropriate Cu content of the alloy. In this study, high Cu content Ti6Al4V-x Cu(x = 4.5, 6, 7.5 wt%) alloys were prepared, and firstly the annealing heat treatments were optimized in the α+β+Ti2Cu triple phase region to obtain satisfied tensile mechanical properties. Then the effect of Cu content on the tribological property, corrosion resistance, antibacterial activity and cytotoxicity of the Ti6Al4 V-x Cu alloys were systematically studied to obtain the appropriate Cu content. The results showed that the optimal annealing temperatures for Ti6Al4 V-x Cu(x = 4.5, 6, 7.5 wt%) alloys were 720, 740 and 760℃, respectively, which was resulted from the proper volume fractions of α,β and Ti2Cu phases in the microstructure. The additions of 4.5 wt% and 6 wt% Cu into the medical Ti6Al4 V alloy could enhance the wear resistance and corrosion resistance of the alloy, but the addition of 7.5 wt% Cu showed an opposite effect. With the increase of the Cu content, the antibacterial property was enhanced due to the increased volume fraction of Ti2Cu phase in the microstructure, but when the Cu content was increased to 7.5 wt%, cytotoxicity was presented. A medium Cu content of 6 wt%, with annealing temperature of 740℃ make the alloy possesses the best comprehensive properties of tensile properties, wear resistance, corrosion resistance, antibacterial property and biocompatibility, which is promising for future medical applications.
基金supported by the National Natural Science Foundation of China(No.51505323)the Applied Basic Research Program of Shanxi Province,China(Nos.20210302123117,20210302124658).
基金National Science and Technology Major Project,China (Nos.2017-VI-0004-0075,J2019-VI-0005-0119)Independent Innovation Special Fund Project of AECC (No.CXPT-2019-030)+1 种基金Stability Program for Basic Materials Research Institutes,China (Nos.2019-0C-4753,CXPT-2020-033)Fundamental Strengthening Program of AECC (No.2021-JCJQ-JJ-0114)for financial support.