In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated Ti...In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).展开更多
应用500 W Nd:YAG固体激光器在纯铜表面原位合成TiB2/Cu复合涂层,测定了熔覆层的显微硬度和导电性,研究了熔覆层的磨损行为和抗电弧烧蚀性能。结果表明,含熔覆层试样的显微硬度由外到里存在明显的梯度变化,其中熔覆层的硬度最高,约为45...应用500 W Nd:YAG固体激光器在纯铜表面原位合成TiB2/Cu复合涂层,测定了熔覆层的显微硬度和导电性,研究了熔覆层的磨损行为和抗电弧烧蚀性能。结果表明,含熔覆层试样的显微硬度由外到里存在明显的梯度变化,其中熔覆层的硬度最高,约为450~490 HV;熔覆层的平均体积导电率约为82.7%IACS,原位合成的细小TiB2相对Cu基体的电导率影响不大;含熔覆层试样的磨损性能明显优于纯铜试样,其主要磨损机制为磨粒磨损;熔覆层内激光原位合成的TiB2颗粒能明显改善Cu基体抗电弧烧蚀的性能。展开更多
基金Projects(U1502274,51834009)supported by the National Natural Science Foundation of ChinaProject(2017ZDXM-GY-028)supported by the Key Research and Development Program of Shaanxi,China。
文摘In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).
基金Project(52265043)supported by the National Natural Science Foundation of ChinaProject(2021A1515010470)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Project(ZK2023(014))supported by the Guizhou Provincial Science and Technology Projects,ChinaProject(YQK[2023]011)supported by the Outstanding Youth Science and Technology Talent Project of Guizhou Province,China。
文摘应用500 W Nd:YAG固体激光器在纯铜表面原位合成TiB2/Cu复合涂层,测定了熔覆层的显微硬度和导电性,研究了熔覆层的磨损行为和抗电弧烧蚀性能。结果表明,含熔覆层试样的显微硬度由外到里存在明显的梯度变化,其中熔覆层的硬度最高,约为450~490 HV;熔覆层的平均体积导电率约为82.7%IACS,原位合成的细小TiB2相对Cu基体的电导率影响不大;含熔覆层试样的磨损性能明显优于纯铜试样,其主要磨损机制为磨粒磨损;熔覆层内激光原位合成的TiB2颗粒能明显改善Cu基体抗电弧烧蚀的性能。