A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was inve...A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.展开更多
文摘采用反应磁控溅射的方法在Ti6Al4V基板上沉积(TiN/Ti)n多层膜,交替沉积Ti层和TiN层,以通入/关闭氮气实现对TiN含量的控制.共溅射10层,每层TiN膜和Ti膜的厚度之和即调制周期不变,二者之间的厚度比即调制比分别为1∶9、1∶5、1∶3和1∶2.利用XRD、SEM分别研究了薄膜的微观结构和表面形貌,利用显微硬度仪和划痕仪测量了薄膜的硬度和膜基结合力.研究结果表明:随着调制比的增大,TiN(200)逐渐消失,出现Ti2N等新相;硬度、结合力有明显增大的趋势,与单层膜相比,多层膜的硬度和结合力最多分别增加250 HV和22 N.
文摘A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.