期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage 被引量:3
1
作者 Baosong Li Shoaib Anwer +3 位作者 Xinhua Huang Shaohong Luo Jing Fu Kin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期202-210,共9页
Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemi... Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemical performance.In this study,we developed a sacrificial-templating route to synthesize TiO_(2)@N-doped carbon nanotubes(TiO_(2)@NC-NTs)with excellent electrochemical performance.The asprepared mesoporous TiO_(2)@NC-NTs with tiny nanocrystals of anatase TiO_(2) wrapped in N-doped carbon layers showed a well-defined tube structure with a large specific surface area of 198 m^(2) g^(-1) and a large pore size of~5 nm.The TiO_(2)@NC-NTs delivered high reversible capacities of 158 m A h g^(-1) at 2 C(1 C=335 m A g^(-1))for 2200 cycles and 146 m A h g^(-1) at 5 C for 4000 cycles,as well as an ultrahigh rate capability of up to 40 C with a capacity of 98 m A h g^(-1).Even at a high current density of 10 C,a capacity of 138 m A h g^(-1) could be delivered over 10,000 cycles.Thus,the synthesis of mesoporous TiO_(2)@NC-NTs was demonstrated to be an efficient approach for developing electrode materials with high sodium storage and long cycle life. 展开更多
关键词 tio2 nanotubes MoO3 template Nitrogen-doped carbon ANODE Sodium-ion battery
下载PDF
Photocatalytic Oxidation of Low Molecular Weight Hydrocarbon Gases over Pt-TiO2 Nanotubes 被引量:2
2
作者 蔡元珠 潘晓阳 +1 位作者 李云鹏 易志国 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第9期1328-1338,共11页
Pt-TiO2 nanotubes with tube diameter of -120 nm and uniformly dispersed Pt particles(size of -2 nm) were successfully synthesized via a carbon nanotube(CNT) templating method followed by a photo-deposition process... Pt-TiO2 nanotubes with tube diameter of -120 nm and uniformly dispersed Pt particles(size of -2 nm) were successfully synthesized via a carbon nanotube(CNT) templating method followed by a photo-deposition processing of Pt nanoparticles. The as-obtained Pt-TiO2 NTs possess both enhanced visible light absorption and reduced recombination of photogenerated electrons and holes. These merits boost the Pt-TiO2 NTs an excellent photocatalytic material toward photooxidation of a variety of low molecular hydrocarbons under atmospheric environment. 展开更多
关键词 small molecular hydrocarbons Pt-supported tio2 nanotubes photocatalysis
下载PDF
Preparation and Characterization of TiO2 Nanotubes Decorated by CuO and CeO2 Particles
3
作者 SHEN Jiali HE Jihuan 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期113-116,共4页
A novel catalyst,TiO2 nanotubes(TiO2 NTs)composite decorated by CuO and CeO2 particles,was prepared by a simple and cost-effective method.The TiO2 NTs were fabricated by the hydrothermal method,and CuO and CeO2 partic... A novel catalyst,TiO2 nanotubes(TiO2 NTs)composite decorated by CuO and CeO2 particles,was prepared by a simple and cost-effective method.The TiO2 NTs were fabricated by the hydrothermal method,and CuO and CeO2 particles loaded onto TiO2 NTs(CuO/CeO2@TiO2 NTs)were prepared by the water bath heating method.The CuO/CeO2@TiO2 NTs were investigated and characterized by transmission electron microscope(TEM),energy dispersive spectrometer(EDS),photoluminescence(PL),X-ray diffractometer(XRD)and ultraviolet-visible light diffuse reflectance spectrum(UV-Vis DRS).Both the p-n heterojunction formed at the p-CuO and n-TiO2 interfaces and the highly induced electron transfer of CeO2 can greatly promote the separation of electrons-holes.Therefore,CuO/CeO2@TiO2 NTs show enhanced absorption and have potential applications in photocatalysis. 展开更多
关键词 tio2 nanotubes(tio2 NTs) CUO CEO2 HYDROTHERMAL method
下载PDF
Fabrication of periodically aligned vertical singlecrystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials 被引量:4
4
作者 Hui Song Kyubong Jo +1 位作者 Bock Young Jung Gun Young Jung 《Nano Research》 SCIE EI CAS CSCD 2014年第1期104-109,共6页
A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an ac... A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an acidic environment to form TiO2 nanotubes (NTs). More specifically, after growing the ZnO NRs via a hydrothermal method, one drop of the TiO2 precursor solution was cast to coat the ZnO NRs, the tops of which were previously covered with chemical capping materials by electrostatic interaction, and then the sample was sintered. Finally, the sample was immersed in an acidic solution resulting in selective etching of the ZnO NR cores. Thus, only TiO2 NTs remained on the substrate. The capping material is effectively used to create a perfect, hexagonal open-ended TiO2 NT array, which interestingly extends onset absorption towards the visible region. 展开更多
关键词 tio2 nanotubes chemical capping material ZnO nanorod template laser interferencelithography
原文传递
Synthesis of Bi-doped TiO2 Nanotubes and Enhanced Photo-catalytic Activity for Hydrogen Evolution from Glycerol Solution 被引量:4
5
作者 Wenxi Zhao Xitao Wang +1 位作者 Huanxin Sang Kang Wang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2013年第3期415-420,共6页
Bi-doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L^-1 NaOH (aq.) through using Bi-doped TiO2 particles derived from conventional sol-gel method as starting... Bi-doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L^-1 NaOH (aq.) through using Bi-doped TiO2 particles derived from conventional sol-gel method as starting materials. The effects of Bi content on the morphology, textural properties, photo absorption and photocatalytic activity of TiO2 nanotubes were investigated. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) observations of the obtained samples revealed the formation of titanate nanotube structure doped with Bi, which exists as a higher oxidation state than Bi3+. Bi-doping TiO2 nanotubes exhibited an extension of light absorption into the visible region and improved photocatalytic activities for hydrogen production from a glycerol/water mixed solution as compared with pure TiO2 nanotubes. There was an optimal Bi-doped content for the photocatalytic hydrogen production, and high content of Bi would retard the phase transition of titanate to anatase and result in morphology change from nanotube to nano- belt, which in turn decreases the photocatlytic activity for hydrogen evolution. 展开更多
关键词 Bi-doped tio2 nanotubes photocatalytic hydrogen evolution glycerol solution
原文传递
Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: A high throughput study using gradient TiO2 nanotubes 被引量:4
6
作者 Yanran Li Si Wang +5 位作者 Yuanjun Dong Ping Mu Yun Yang Xiangyang Liu Changjian Lin Qiaoling Huang 《Bioactive Materials》 SCIE 2020年第4期1062-1070,共9页
The research of TiO2 nanotubes(TNTs)in the field of biomedicine has been increasingly active.However,given the diversity of the nanoscale dimension and controversial reports,our understanding of the structure-property... The research of TiO2 nanotubes(TNTs)in the field of biomedicine has been increasingly active.However,given the diversity of the nanoscale dimension and controversial reports,our understanding of the structure-property relationships of TNTs is not yet complete.In this paper,gradient TNTs with a wide diameter range of 20-350 nm were achieved by bipolar electrochemistry and utilized for a thorough high-throughput study of the effect of nanotube dimension and crystalline phase on protein adsorption and cell behaviors.Results indicated that protein adsorption escalated with nanotube dimension whereas cell proliferation and differentiation are preferred on small diameter(<70 nm)nanotubes.Large diameter anatase nanotubes had higher adsorption of serum proteins than as-prepared ones.But only as-prepared small diameter nanotubes presented slightly higher cell proliferation than corresponding annealed nanotubes whereas there was no discernible difference between as-prepared and annealed nanotubes on cell differentiation for the entire gradient.Those findings replenish previous research about how cell responses to TNTs with a wide diameter range and provide scientific guidance for the optimal design of biomedical materials. 展开更多
关键词 Gradient tio2 nanotubes High-throughput screening Protein adsorption Cell proliferation Cell differentiation
原文传递
Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer 被引量:2
7
作者 Jiajun Luo Maryam Tamaddon +4 位作者 Changyou Yan Shuanhong Ma Xiaolong Wang Feng Zhou Chaozong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期47-55,共9页
TiO2 nanotubes(NT)has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration.However,the fretting biocorrosion is the main concern that limited its... TiO2 nanotubes(NT)has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration.However,the fretting biocorrosion is the main concern that limited its successfully application in orthopaedic application.In this study,a structure optimised thin TiO2 nanotube(SONT)layer was successfully created on Ti6Al4V bone screw,and its fretting corrosion performance was investigated and compared to the pristine Ti6Al4V bone screws and NT decorated screw in a bone-screw fretting simulation rig.The results have shown that the debonding TiO2 nanotube from the bone screw reduced significantly,as a result of structure optimisation.The SONT layer also exhibited enhanced bio-corrosion resistance compared pristine bone screw and conventionally NT modified bone screw.It is postulated that interfacial layer between TiO2 nanotube and Ti6Al4V substrate,generated during structure optimisation process,enhanced bonding of TiO2 nanotube layer to the Ti6Al4V bone screws that leading to the improvement in fretting corrosion resistance.The results highlighted the potential SONT in orthopaedic application as bone fracture fixation devices. 展开更多
关键词 Bone implant interface Bone screws Biomedical materials tio2 nanotubes Fretting corrosion
原文传递
Electro-Optics and Band Gap Energies of Nanosilver-Coated TiO2 Nanotubes on Titanium Metal
8
作者 Ugursoy Olgun Mustafa Gülfen +1 位作者 Fatih Ustel Hale Arslan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第2期153-163,共11页
TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanot... TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanotubes were examined by using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, cyclic voltammetry, and UV–Vis. The electrochemical band gap(Eg^CV) of the nanosilver-coated TiO2 nanotubes prepared by the anodization was found as 1.54 eV. Using the UV–Vis measurements, the optical band gap energy(Eg^op.) was calculated as 1.51 eV for the Ag/TiO2 nanotubes obtained by electroless dip coating. The electrical conductivity of the TiO2 nanotubes also increased from 3.0 × 10^-4 to 34.7 S/cm after nano Ag deposition by the anodization method.These Ag/TiO2 nanotubes with low band gap and high electrical conductivity are desirable for the applications in electronics, Li-ion batteries, and solar cells. 展开更多
关键词 Electrochemical anodization tio2 nanotubes Nano Ag deposition Band gap energy Electrical conductivity
原文传递
Direct Electrochemistry of Hemoglobin on Vertically Aligned Carbon Hybrid TiO2 Nanotubes and Its Highly Sensitive Biosensor Performance
9
作者 Meichuan Liu Guohua Zhao +2 位作者 Yiting Tang Huijie Shi Nianjun Yang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2013年第2期215-220,共6页
The present work is focused on developing a novel biomaterial platform to achieve enhanced direct electron transfer (DET) of hemoprotein and higher biosensor performance on vertically aligned carbon hybrid TiO2 nano... The present work is focused on developing a novel biomaterial platform to achieve enhanced direct electron transfer (DET) of hemoprotein and higher biosensor performance on vertically aligned carbon hybrid TiO2 nanotubes (C-TiO2 NTs). Using a simple surfactant-assisted method, controllable hybridization of TiO2 NTs with conductive amorphous carbon species is realized. The obtained C-TiO2 NTs is ingeniously chosen to serve as an ideal "vessel" for protein immobilization and biosensor applications. Results show that the appropriate hybridization of C into TiO2 NTs leads to a much better conductivity of TiO2 NTs without destroying their preponderant tubular structures or damaging their excellent biocompatibility and hydrophilicity. When used in loading proteins, the C-TiO2 NTs can be used as a super vessel for rapid and substantive immobilization of hemoglobin (Hb), with a large surface electroactive Hb coverage (I*) of 3.3 × 10 9 mol·cm^-2. Enhanced DET of Hb is commendably observed on the constructed Hb/C-TiO2 NTs biosensor with a couple of well-defined redox peaks in a fast electron transfer process. The biosensor further exhibits fast response, high sensitivity and stability for the amperometric biosensing of H202 with the detection limit as low as 3.1 × 10^-8 mol/L. 展开更多
关键词 carbon hybrid tio2 nanotubes direct electron transfer electrochemical biosensors HEMOGLOBIN
原文传递
Deciphering controversial results of cell proliferation on TiO2 nanotubes using machine learning
10
作者 Ziao Shen Si Wang +5 位作者 Zhenyu Shen Yufei Tang Junbin Xu Changjian Lin Xun Chen Qiaoling Huang 《Regenerative Biomaterials》 SCIE 2021年第4期33-41,共9页
With the rapid development of biomedical sciences,contradictory results on the relationships between biological responses and material properties emerge continuously,adding to the challenge of interpreting the incompr... With the rapid development of biomedical sciences,contradictory results on the relationships between biological responses and material properties emerge continuously,adding to the challenge of interpreting the incomprehensible interfacial process.In the present paper,we use cell proliferation on titanium dioxide nanotubes(TNTs)as a case study and apply machine learning methodologies to decipher contradictory results in the literature.The gradient boosting decision tree model demonstrates that cell density has a higher impact on cell proliferation than other obtainable experimental features in most publications.Together with the variation of other essential features,the controversy of cell proliferation trends on various TNTs is understandable.By traversing all combinational experimental features and the corresponding forecast using an exhausted grid search strategy,we find that adjusting cell density and sterilization methods can simultaneously induce opposite cell proliferation trends on various TNTs diameter,which is further validated by experiments.This case study reveals that machine learning is a burgeoning tool in deciphering controversial results in biomedical researches,opening up an avenue to explore the structure-property relationships of biomaterials. 展开更多
关键词 tio2 nanotubes cell proliferation controversial results machine learning
原文传递
BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications 被引量:6
11
作者 Rui Wang Jing Bai +3 位作者 Yunpo Li Qingyi Zeng Jinhua Li Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期14-22,共9页
We report the development of a novel visible response BiVO_4/TiO_2(N_2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO_2 nanotube shows a high carrier concentration rate, thus re... We report the development of a novel visible response BiVO_4/TiO_2(N_2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO_2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron–hole recombination in the TiO_2–BiVO_4. Therefore, the BiVO_4/TiO_2(N_2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm^(-2)(at 1 V vs. Ag/Ag Cl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV–Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite. 展开更多
关键词 BIVO4 tio2(N2) nanotube HETEROJUNCTION PHOTOELECTROCATALYTIC Degradation of dyes
下载PDF
Enhanced Photoelectrochemical Property of Zn Loaded TiO2 Nanotube Arrays Electrode 被引量:2
12
作者 肖鹏 李露 +3 位作者 张云怀 戴洪法 胡玉琢 卢露 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期113-116,I0002,共5页
TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of... TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled by chronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode. 展开更多
关键词 Zn nanoparticle tio2 nanotube PHOTOCURRENT
下载PDF
TEM Study on the Formation Process of TiO_2 Nanotubes 被引量:7
13
作者 Jing Wei ZHANG Xin Yong GUO +3 位作者 Zhen Sheng JIN Shun Li ZHANG Jing Fang ZHOU Zhi Jun ZHANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第4期419-422,共4页
The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, an... The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, anisotropic swelling appears on the polycrystalline TiO2 granula at first, and then the nanotubes are formed. 展开更多
关键词 tio2 nanotubes anisotropic swelling TEM.
下载PDF
TiO_2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis 被引量:6
14
作者 Wanni Wang Fu Zhang +4 位作者 Chuanling Zhang Yang Wang Wei Tao Sheng Cheng Haisheng Qian 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第11期1851-1859,共9页
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro... We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection. 展开更多
关键词 tio2 nanotubes Upconversion nanoparticles Energy transfer PHOTOCATALYSIS Nanotransducer
下载PDF
Fabrication, annealing, and electrocatalytic properties of platinum nanoparticles supported on self-organized TiO_2 nanotubes 被引量:2
15
作者 LEI Bin XUE Jianjun JIN Danping NIShougao SUN Haibo 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期445-450,共6页
The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO... The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs. 展开更多
关键词 platinum nanoparticles tio2 nanotubes cyclic voltammetry methanol oxidation electrocatalytic properties
下载PDF
Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO_2 nanotubes 被引量:1
16
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh Hamed Fatehy 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期320-324,共5页
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c... An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls. 展开更多
关键词 inverted polymer solar cells tio2 nanotubes electrochemical-anodizing doctor blading
下载PDF
Influence of Calcination Temperature on TiO_2 Nanotubes’Catalysis for TiO_2/UV/O_3 in Landfill Leachate Solution 被引量:1
17
作者 潘留明 季民 +1 位作者 王秀朵 赵乐军 《Transactions of Tianjin University》 EI CAS 2010年第3期179-186,共8页
The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as T... The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina- tion temperature's influence on TNTs' adsorption activity for for TiO2/UV/O3 was investigated in landfill leachate solution chemical oxygen demand (COD) and catalytic activity In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 rain, and then became close to those of the latter two in the following 40 rain. Compared with TNTs-300 and TNTs- 400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃. 展开更多
关键词 tio2 nanotubes calcination temperature photocatalytic ozonation landfill leachate
下载PDF
TiO_2 nanotubes:A novel solid phase extraction adsorbent for the sensitive determination of nickel in environmental water samples 被引量:1
18
作者 Xin Ning Zhao Qi Zeng Shi +1 位作者 Guo Hong Xie Qing Xiang Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第7期865-867,共3页
A novel method was developed for the sensitive determination of nickel in environmental water samples by using TiO2 nanotubes, a new nanomaterial, as solid phase extraction absorbent. In general, TiO2 nanomaterials we... A novel method was developed for the sensitive determination of nickel in environmental water samples by using TiO2 nanotubes, a new nanomaterial, as solid phase extraction absorbent. In general, TiO2 nanomaterials were often used for catalytic degradation of pollutants in environmental field, and only a very few application in environmental analytic chemistry. In present work, TiO2 nanotubes was firstly used for the enrichment of nickel and the factors would influence the preconcentration performance were optimized. Under the optimal conditions, TiO2 nanotubes exhibited its good enrichment capacity for nickel and the detection limit of the proposed method was 1 ng· mL^-1. The proposed method was validated with real water samples, and excellent results were obtained with the spiked recoveries in the range of 94.4-99.2%, respectively. 展开更多
关键词 tio2 nanotubes NICKEL Flame atomic absorption spectrometry
下载PDF
Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic(PECa)cells
19
作者 Claudio Ampelli Francesco Tavella +3 位作者 Chiara Genovese Siglinda Perathoner Marco Favaro Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期284-294,共11页
The efficiency of photo-electrocatalytic(PECa) devices for the production of solar fuels depends on several limiting factors such as light harvesting, charge recombination and mass transport diffusion. We analyse he... The efficiency of photo-electrocatalytic(PECa) devices for the production of solar fuels depends on several limiting factors such as light harvesting, charge recombination and mass transport diffusion. We analyse here how they influence the performances in PECa cells having a photo-anode based on Au-modified TiOnanotube(TNT) arrays, with the aim of developing design criteria to optimize the photo-anode and the PECa cell configuration for water photo-electrolysis(splitting) and ethanol photo-reforming processes.The TNT samples were prepared by controlled anodic oxidation of Ti foils and then decorated with gold nanoparticles using different techniques to enhance the visible light response through heterojunction and plasmonic effects. The activity tests were made in a gas-phase reactor, as well as in a PECa cell without applied bias. Results were analysed in terms of photo-generated current, Hproduction rate and photoconversion efficiency. Particularly, a solar-to-hydrogen efficiency of 0.83% and a Faradaic efficiency of 91%were obtained without adding sacrificial reagents. 展开更多
关键词 H2 production Au nanoparticles Solar fuels tio2 nanotubes ELECTRODEPOSITION Photoelectrochemical cells(PEC) Solar-to-hydrogen efficiency Anodic oxidation
下载PDF
Enhanced hydrogen production activity over BiOX–TiO2 under solar irradiation:Improved charge transfer through bismuth oxide clusters
20
作者 Police Anil Kumar Reddy Chennaiahgari Manvitha +2 位作者 Pullagurala Venkata Laxma Reddy Ki-Hyun Kim Valluri Durga Kumari 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期390-397,共8页
A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction... A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction spectroscopy(XRD), X-ray photo electron spectroscopy(XPS), UV–Vis diffused reflectance spectra(DRS), photoluminescence spectra(PLS), transmission electron microscopy(TEM), energy dispersive analysis of X-rays(EDAX), and BET surface analysis. These catalysts were employed for the photocatalytic production of hydrogen from a mixture of pure water and glycerol under solar light irradiation. The presence of the Bispecies was found to play a vital role in enhancing activity while minimizing electron hole recombination(relative to bare TiO). The nanotubes exhibited better activity than the nanoparticles of Bi-deposited TiO, showing the significance of the morphology; however, photocatalytic activity is predominantly dependent on the deposition of bismuth. The activity increased by approximately an order of magnitude at the optimum concentration of Bi deposited over TiO(2 wt%). The presence of the Bispecies played a vital role in minimizing electron hole recombination, resulting in higher activity compared to bare TiO. 展开更多
关键词 BISMUTH tio2 nanotubes Visible photocatalysis Water splitting Hydrogen
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部