After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronaut...Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.展开更多
As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction wi...As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind.The instrument consists of two identical triaxial fluxgate magnetometer sensors,mounted on a 3.19 meter-long boom with a seperation of about 90 cm.The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads.The sensors are controlled by an electric box mounted inside the orbiter.Each magnetometer measures the ambient vector magnetic field over a wide dynamic range(to 10,000 nT per axis)with a resolution of 1.19 pT.Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz,but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.展开更多
The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MIN...The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MINPA was switched on to measure the solar wind ions.Here,we present the first results of the MINPA observations in the solar wind.During cruise,nearly half of the MINPA ion field-of-view(FOV)was blocked by the lander capsule;thus only the solar-wind ions with azimuthal speeds pointing towards the unblocked FOV sectors could be detected.We perform a detailed comparison of the MINPA’s solar wind observations with data from Earth-based missions when MINPA reached its count-rate peak,finding a general consistency of the ion moments between them.The blocking effect due to the lander is evaluated quantitatively under varying solar-wind velocity conditions.Despite the blocking effect,the MINPA’s solar wind measurements during the transfer orbit suggest a good performance.展开更多
Mars is not only our nearby but also the most Earth-like planetary neighbor.Scientific exploration of Mars is thus of crucial value to our understanding of the solar system.The existence of abundant evidence for the f...Mars is not only our nearby but also the most Earth-like planetary neighbor.Scientific exploration of Mars is thus of crucial value to our understanding of the solar system.The existence of abundant evidence for the former presence of water on Mars demands further exploration for signs of life on our sister planet,and investigations that could shed light on conditions favorable to the origin of life.For nearly 60 years,humans have conducted orbitally-based remote sensing and in-situ surface exploration of Mars,leading to many significant scientific discoveries.But much remains to be done before we can be sure that we truly and fully understand Mars.Key research topics include the history of water on Mars and how that history relates to the planet’s habitable environment-past,present,and future;the distribution and evolution of waterbearing and evaporative salt minerals on the planet’s surface;the history of volcanic activity on Mars;the Martian magnetic field and its effect on the escape of water and atmosphere from the planet;interactions between the solar wind and the Martian atmosphere and ionosphere;atmospheric characteristics and climate change on Mars;and so on(Li CL et al.,2018;Liu JJ et al.,2018).Based on the above scientific questions about life,climate,and geology on Mars,the international planetary science community has formulated ambitious Mars exploration programs.展开更多
The plume-surface interaction(PSI)is a common phenomenon that describes the environment surrounding the landers resulting from the impingement of hot rocket exhaust on the regolith of planetary bodies.The PSI will cau...The plume-surface interaction(PSI)is a common phenomenon that describes the environment surrounding the landers resulting from the impingement of hot rocket exhaust on the regolith of planetary bodies.The PSI will cause obscuration,erosion of the planetary surface,and high-speed spreading of dust or high-energy ejecta streams,which will induce risks to a safe landing and cause damage to payloads on the landers or to nearby assets.Safe landings and the subsequent scientific goals of deep-space exploration in China call for a comprehensive understanding of the PSI process,including the plume flow mechanics,erosion mechanism,and ejecta dynamics.In addition,the landing crater caused by the plume provides a unique and insightful perspective on the understanding of PSI.In particular,the PSI can be used directly to constrain the composition,structure,and mechanical properties of the surface and subsurface soil.In this study,we conducted a systematic review of the phenomenology and terrestrial tests of PSI:we analyzed the critical factors in the PSI process and compared the differences in PSI phenomena between lunar and Martian conditions;we also reviewed the main erosion mechanisms and the evolution and development of terrestrial tests on PSI.We discuss the problems with PSI,challenges of terrestrial tests,and prospects of PSI,and we show the preliminary results obtained from the landing crater caused by the PSI of Tianwen-1.From analysis of the camera images and digital elevation model reconstructions,we concluded that the landing of Tianwen-1 caused the deepest crater(depth>40 cm)on a planetary surface reported to date and revealed stratigraphic layers in the subsurface of Martian soil.We further constrained the lower bounds of the mechanical properties of Martian soil by a slope stability analysis of the Tianwen-1 landing crater.The PSI may offer promising opportunities to obtain greater insights into planetary science,including the subsurface structure,mineral composition,and properties of soil.展开更多
The background and scientific objectives of the Mars Climate Station(MCS)for Tianwen-1 are introduced,accompanied by a comparative review of the status of related meteorological observation missions and of advanced se...The background and scientific objectives of the Mars Climate Station(MCS)for Tianwen-1 are introduced,accompanied by a comparative review of the status of related meteorological observation missions and of advanced sensing technologies.As one of the China Tianwen-1 Mission’s principal scientific payloads,the MCS contains four measurement sensors and one electronic processing unit that are specially designed to measure local temperature,pressure,wind,and sound on the Martian surface.The MCS’s measurement principles,technical schemes,ground calibration techniques,and adaptability evaluation to the Mars surface environment of MCS are introduced in details.The conclusion presents measurement performance specifications of the MCS,based on ground test results,that will provide guidance to future research based on data from the Tianwen-1 and later Mars missions.展开更多
The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to ...The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.展开更多
The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations...The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations from the Mars Ion and Neutral Particle Analyzer onboard the Tianwen-1 orbiter,we calculated the pitch angle distributions of protons in the Martian induced magnetosphere by using information from the magnetohydrodynamically simulated magnetic field,and we statistically analyzed the spatial occurrence pattern of different types of pitch angle distributions.Even though no symmetrical features were seen in the dataset,we found the dominance of the field-aligned distribution type over the energy range from 188 to 6232 eV.Maps of the occurrence rate showed the preferential presence of a trapped-like distribution at the lower altitudes of the surveyed nightside region.Although our results are more or less restricted by the adopted magnetic field,they indicate the complexity of the near-Mars proton pitch angle distributions and infer the possibility of wave–particle interactions in the Martian induced magnetosphere.展开更多
China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface ...China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface for this mission based on orbital remotesensing data.We constructed a geomorphologic map for the Tianwen-1 landing area.Results of our detailed geomorphologic map show several major landforms within the landing area,including rampart craters,mesas,troughs,cones,and ridges.Analysis of materials on the landing area surface indicates that most of the landing area is covered by Martian dust.Transverse aeolian ridges are widely distributed within the landing area,indicating the surface contexts were(and still are)modified by regional winds.In addition,a crater counting analysis indicates the landing area has an absolute model age of~3.3 Ga and that a later resurfacing event occurred at~1.6 Ga.Finally,we outline four formational scenarios to test the formation mechanisms for the geomorphologic features on the landing area surface.The most likely interpretation to explain the existence of the observed surface features can be summarized as follows:A thermal influence may have played an important role in the formation of the surface geomorphologic features;thus,igneous-related processes may have occurred in the landing area.Water ice may also have been involved in the construction of the primordial surface configuration.Subsequent resurfacing events and aeolian processes buried and modified the primordial surface.展开更多
Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the appl...Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the applied calibrated magnetic fields and the output from the sensors were confirmed to be better than 10^(-4),and the sensor axes were orthogonal to each other within 0.5 degrees.The temperature dependencies of the sensitivity and misalignment angle were examined,but no clear signatures of temperature dependencies could be seen.Sensor offset and the stability of sensor offset drift with a temperature change were also determined by the rotation method.The stability of the sensor offset drift was less than 0.01 nT/℃.The ground calibration of MOMAG determines all the calibration parameters of the sensors for accurate magnetic field measurements in orbit with the appropriate corrections.展开更多
On the great journey to Mars,China’s first planetary exploration mission,the Tianwen-1 came within 26 million kilometers of Mars from 31 October 2020 to 25 January 2021 and was getting closer to its destination,the r...On the great journey to Mars,China’s first planetary exploration mission,the Tianwen-1 came within 26 million kilometers of Mars from 31 October 2020 to 25 January 2021 and was getting closer to its destination,the red planet,in search of answers to the cataclysmic climate change that occurred in Martian history.Both the escape of the Martian atmosphere and the loss of surface water were firmly influenced by solar activities.Tianwen-1 provided a unique chance to depict the solar wind streams between Earth and Mars during the minimum of Solar Cycle 25.During the three-month cruise phase of Tianwen-1,the solar wind flows were successively observed at Earth,Tianwen-1,and Mars.After the field of view correction and noise reduction,the solar wind velocity and density measured by Tianwen-1 show good agreement with those at Earth and Mars.The results indicate that the performance of the ion analyzer onboard the Tianwen-1 orbiter is reliable and stable.It is worth looking forward to the joint observations of ion escape with other Mars probes in the following Martian years.展开更多
The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity o...The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.展开更多
The entry vehicle for the Tianwen-1 mission successfully landed on the surface of Mars at 7:18 AM BJT on May 15,2021.This successful landing made China the first country to orbit,land,and release a rover in their firs...The entry vehicle for the Tianwen-1 mission successfully landed on the surface of Mars at 7:18 AM BJT on May 15,2021.This successful landing made China the first country to orbit,land,and release a rover in their first attempt at the Mars exploration.The guidance,navigation,and control(GNC)system plays a crucial role in the entry,descent,and landing(EDL)phases.This study focused on the attitude control component of the GNC system design.The EDL phase can be divided into several sub-phases,namely the angle of attack control phase,lift control phase,parachute descent phase,and powered descent phase.Each sub-phase has unique attitude control requirements and challenges.This paper introduces the key aspects of designing attitude controllers for each phase.Furthermore,flight results are presented and analyzed.展开更多
The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consis...The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consisting of a flush air data system and a multilayer temperature-sensing system was installed aboard the entry vehicle.A combined approach was applied in the entry,descent,and landing trajectory reconstruction using all available data obtained by the inertial measurement unit and the flush air data system.An aerodynamic database covering the entire flight regime was generated using computational fluid dynamics methods to assist in the reconstruction process.A preliminary analysis of the trajectory reconstruction result,along with the atmosphere reconstruction and aerodynamic performance,was conducted.The results show that the trajectory agrees closely with the nominal trajectory and the wind-relative attitude.Suspected wind occurred at the end of the trajectory.展开更多
To meet the requirements of the Tianwen-1 mission,adaptive entry guidance for entry vehicles,with low lift-to-drag ratios,limited control authority,and large initial state bias,was presented.Typically,the entry guidan...To meet the requirements of the Tianwen-1 mission,adaptive entry guidance for entry vehicles,with low lift-to-drag ratios,limited control authority,and large initial state bias,was presented.Typically,the entry guidance law is divided into four distinct phases:trim angle-of-attack phase,range control phase,heading alignment phase,and trim-wing deployment phase.In the range control phase,the predictor–corrector guidance algorithm is improved by planning an on-board trajectory based on the Mars Science Laboratory(MSL)entry guidance algorithm.The nominal trajectory was designed and described using a combination of the downrange value and other states,such as drag acceleration and altitude rate.For a large initial state bias,the nominal downrange value was modified onboard by weighing the landing accuracy,control authority,and parachute deployment altitude.The biggest advantage of this approach is that it allows the successful correction of altitude errors and the avoidance of control saturation.An overview of the optimal trajectory design process,including a discussion of the design of the initial flight path angle,relevant event trigger,and transition conditions between the four phases,was also presented.Finally,telemetry data analysis and post-flight assessment results were used to illustrate the adaptive guidance law,create good conditions for subsequent parachute reduction and power reduction processes,and gauge the success of the mission.展开更多
On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the g...On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.展开更多
Mars orbiter magnetometer(MOMAG)is one of seven science payloads onboard Tianwen-1’s orbiter.Unlike most of the satellites,Tianwen-1’s orbiter is not magnetically cleaned,and the boom where placed the magnetometer’...Mars orbiter magnetometer(MOMAG)is one of seven science payloads onboard Tianwen-1’s orbiter.Unlike most of the satellites,Tianwen-1’s orbiter is not magnetically cleaned,and the boom where placed the magnetometer’s sensors is not long enough.These pose many challenges to the magnetic field data processing.In this study,we introduce the in-flight calibration process of the Tianwen-1/MOMAG.The magnetic interference including spacecraft generated dynamic field and the slowlychanging zero offsets are cleaned in sequence.Then the calibrated magnetic field data are compared with the data from the Mars atmosphere and volatile Evolutio N(MAVEN).We find that some physical structures in the solar wind are consistent between the two data sets,and the distributions of the magnetic field strength in the solar wind are very similar.These results suggest that the in-flight calibration of the MOMAG is successful and the MOMAG provides reliable data for scientific research.展开更多
Tianwen-1(TW-1)is the first Chinese interplanetary mission to have accomplished orbiting,landing,and patrolling in a single exploration of Mars.After safe landing,it is essential to reconstruct the descent trajectory ...Tianwen-1(TW-1)is the first Chinese interplanetary mission to have accomplished orbiting,landing,and patrolling in a single exploration of Mars.After safe landing,it is essential to reconstruct the descent trajectory and determine the landing site of the lander.For this purpose,we processed descent images of the TW-1 optical obstacle-avoidance sensor(OOAS)and digital orthophoto map(DOM)of the landing area using our proposed hybrid-matching method,in which the landing process is divided into two parts.In the first,crater matching is used to obtain the geometric transformations between the OOAS images and DOM to calculate the position of the lander.In the second,feature matching is applied to compute the position of the lander.We calculated the landing site of TW-1 to be 109.9259◦E,25.0659◦N with a positional accuracy of 1.56 m and reconstructed the landing trajectory with a horizontal root mean squared error of 1.79 m.These results will facilitate the analyses of the obstacle-avoidance system and optimize the control strategy in the follow-up planetary-exploration missions.展开更多
Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft land...Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft landing on the surface of Mars.In the process of EDL,the landing platform would encounter a series of irreversible incidents within environmental unpredictability,making this process highly risky.The emergency communication device plays an important role if in the Mars Exploration Program.It can capture and store key dynamic parameters during EDL phase,enabling a high probability of survival in the occurrence of a faulty condition.It can also send the stored data to the Mars obit probe when the communication condition is met.This paper presents a scheme design for the emergency communication device based on its functionality and performance requirements.It includes the design proposal,simulation results,reliability analysis,technical risks and control measures,inheritance and performance compliance which verifies the rationality and correctness of the design.展开更多
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金National Natural Science Foundation of China(Grant Nos.42174192,12241101,and 91952111).
文摘Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.
基金supported by the Chinese National Space Administration,and the science team of MOMAG is supported by the Strategic Priority Program(Grant No.XDB41000000)the key Research Program of Frontier Sciences(No.QYZDB-SSW-DQC015)of the Chinese Academy of Sciences.
文摘As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind.The instrument consists of two identical triaxial fluxgate magnetometer sensors,mounted on a 3.19 meter-long boom with a seperation of about 90 cm.The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads.The sensors are controlled by an electric box mounted inside the orbiter.Each magnetometer measures the ambient vector magnetic field over a wide dynamic range(to 10,000 nT per axis)with a resolution of 1.19 pT.Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz,but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant NO.ZDBS-SSW-TLC00103)Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB41000000)+3 种基金NNSFC Grant No.41974170 and 41974196Specialized Research Fund for State Key Laboratories of China,and Pandeng Program of National Space Science Center,Chinese Academy of Sciences.BBT(2019153),YTZ(2017186),WYL(2018177)LHX(2021144)were supported by the Youth Innovation Promotion Associationfunded by the Young Elite Scientists Sponsorship Program by CAST.
文摘The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MINPA was switched on to measure the solar wind ions.Here,we present the first results of the MINPA observations in the solar wind.During cruise,nearly half of the MINPA ion field-of-view(FOV)was blocked by the lander capsule;thus only the solar-wind ions with azimuthal speeds pointing towards the unblocked FOV sectors could be detected.We perform a detailed comparison of the MINPA’s solar wind observations with data from Earth-based missions when MINPA reached its count-rate peak,finding a general consistency of the ion moments between them.The blocking effect due to the lander is evaluated quantitatively under varying solar-wind velocity conditions.Despite the blocking effect,the MINPA’s solar wind measurements during the transfer orbit suggest a good performance.
文摘Mars is not only our nearby but also the most Earth-like planetary neighbor.Scientific exploration of Mars is thus of crucial value to our understanding of the solar system.The existence of abundant evidence for the former presence of water on Mars demands further exploration for signs of life on our sister planet,and investigations that could shed light on conditions favorable to the origin of life.For nearly 60 years,humans have conducted orbitally-based remote sensing and in-situ surface exploration of Mars,leading to many significant scientific discoveries.But much remains to be done before we can be sure that we truly and fully understand Mars.Key research topics include the history of water on Mars and how that history relates to the planet’s habitable environment-past,present,and future;the distribution and evolution of waterbearing and evaporative salt minerals on the planet’s surface;the history of volcanic activity on Mars;the Martian magnetic field and its effect on the escape of water and atmosphere from the planet;interactions between the solar wind and the Martian atmosphere and ionosphere;atmospheric characteristics and climate change on Mars;and so on(Li CL et al.,2018;Liu JJ et al.,2018).Based on the above scientific questions about life,climate,and geology on Mars,the international planetary science community has formulated ambitious Mars exploration programs.
基金supported by the National Natural Science Foundation of China(Grant 42230111)the Key Research Program of the Institute of Geology and Geophysics,CAS(Mars Mission,Grant IGGCAS-202102)+1 种基金the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant IGGCAS-201904)the CAS Key Technology Talent Program.
文摘The plume-surface interaction(PSI)is a common phenomenon that describes the environment surrounding the landers resulting from the impingement of hot rocket exhaust on the regolith of planetary bodies.The PSI will cause obscuration,erosion of the planetary surface,and high-speed spreading of dust or high-energy ejecta streams,which will induce risks to a safe landing and cause damage to payloads on the landers or to nearby assets.Safe landings and the subsequent scientific goals of deep-space exploration in China call for a comprehensive understanding of the PSI process,including the plume flow mechanics,erosion mechanism,and ejecta dynamics.In addition,the landing crater caused by the plume provides a unique and insightful perspective on the understanding of PSI.In particular,the PSI can be used directly to constrain the composition,structure,and mechanical properties of the surface and subsurface soil.In this study,we conducted a systematic review of the phenomenology and terrestrial tests of PSI:we analyzed the critical factors in the PSI process and compared the differences in PSI phenomena between lunar and Martian conditions;we also reviewed the main erosion mechanisms and the evolution and development of terrestrial tests on PSI.We discuss the problems with PSI,challenges of terrestrial tests,and prospects of PSI,and we show the preliminary results obtained from the landing crater caused by the PSI of Tianwen-1.From analysis of the camera images and digital elevation model reconstructions,we concluded that the landing of Tianwen-1 caused the deepest crater(depth>40 cm)on a planetary surface reported to date and revealed stratigraphic layers in the subsurface of Martian soil.We further constrained the lower bounds of the mechanical properties of Martian soil by a slope stability analysis of the Tianwen-1 landing crater.The PSI may offer promising opportunities to obtain greater insights into planetary science,including the subsurface structure,mineral composition,and properties of soil.
基金supported by funding from the China State Administration of Science Technology and Industry for National Defense.
文摘The background and scientific objectives of the Mars Climate Station(MCS)for Tianwen-1 are introduced,accompanied by a comparative review of the status of related meteorological observation missions and of advanced sensing technologies.As one of the China Tianwen-1 Mission’s principal scientific payloads,the MCS contains four measurement sensors and one electronic processing unit that are specially designed to measure local temperature,pressure,wind,and sound on the Martian surface.The MCS’s measurement principles,technical schemes,ground calibration techniques,and adaptability evaluation to the Mars surface environment of MCS are introduced in details.The conclusion presents measurement performance specifications of the MCS,based on ground test results,that will provide guidance to future research based on data from the Tianwen-1 and later Mars missions.
基金supported by the NSFC(Grant Nos 42130204 and 42188101)the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the support of the Tencent Foundation.
文摘The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.
基金supported by the National Natural Science Foundation of China(Grant No.42241143)the pre-research projects on Civil Aerospace Technologies(No.D020104)funded by the China National Space Administration.
文摘The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations from the Mars Ion and Neutral Particle Analyzer onboard the Tianwen-1 orbiter,we calculated the pitch angle distributions of protons in the Martian induced magnetosphere by using information from the magnetohydrodynamically simulated magnetic field,and we statistically analyzed the spatial occurrence pattern of different types of pitch angle distributions.Even though no symmetrical features were seen in the dataset,we found the dominance of the field-aligned distribution type over the energy range from 188 to 6232 eV.Maps of the occurrence rate showed the preferential presence of a trapped-like distribution at the lower altitudes of the surveyed nightside region.Although our results are more or less restricted by the adopted magnetic field,they indicate the complexity of the near-Mars proton pitch angle distributions and infer the possibility of wave–particle interactions in the Martian induced magnetosphere.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC001)the National Natural Science Foundation(Grant No.11803056).
文摘China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface for this mission based on orbital remotesensing data.We constructed a geomorphologic map for the Tianwen-1 landing area.Results of our detailed geomorphologic map show several major landforms within the landing area,including rampart craters,mesas,troughs,cones,and ridges.Analysis of materials on the landing area surface indicates that most of the landing area is covered by Martian dust.Transverse aeolian ridges are widely distributed within the landing area,indicating the surface contexts were(and still are)modified by regional winds.In addition,a crater counting analysis indicates the landing area has an absolute model age of~3.3 Ga and that a later resurfacing event occurred at~1.6 Ga.Finally,we outline four formational scenarios to test the formation mechanisms for the geomorphologic features on the landing area surface.The most likely interpretation to explain the existence of the observed surface features can be summarized as follows:A thermal influence may have played an important role in the formation of the surface geomorphologic features;thus,igneous-related processes may have occurred in the landing area.Water ice may also have been involved in the construction of the primordial surface configuration.Subsequent resurfacing events and aeolian processes buried and modified the primordial surface.
基金This work was financially supported by the Chinese National Space Administration(CNSA),the Strategic Priority Program(Grant No.XDB41000000)the Key Research Program of Frontier Sciences(No.QYZDB-SSW-DQC015)the Strategic Priority Program(Grant No.XDB41030100)of the Chinese Academy of Sciences.Thanks are extended to the entire MOMAG team at the University of Science and Technology of China.
文摘Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the applied calibrated magnetic fields and the output from the sensors were confirmed to be better than 10^(-4),and the sensor axes were orthogonal to each other within 0.5 degrees.The temperature dependencies of the sensitivity and misalignment angle were examined,but no clear signatures of temperature dependencies could be seen.Sensor offset and the stability of sensor offset drift with a temperature change were also determined by the rotation method.The stability of the sensor offset drift was less than 0.01 nT/℃.The ground calibration of MOMAG determines all the calibration parameters of the sensors for accurate magnetic field measurements in orbit with the appropriate corrections.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA17010201)the National Natural Science Foundation of China(Grant Nos.42074207,42104171)+3 种基金the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant Nos.IGGCAS-201904,IGGCAS-202102)the Key Research Program of Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)supported by the Thousand Young Talents Program of Chinasupported by the Youth Innovation Promotion Association of CAS(Grant No.2021064)。
文摘On the great journey to Mars,China’s first planetary exploration mission,the Tianwen-1 came within 26 million kilometers of Mars from 31 October 2020 to 25 January 2021 and was getting closer to its destination,the red planet,in search of answers to the cataclysmic climate change that occurred in Martian history.Both the escape of the Martian atmosphere and the loss of surface water were firmly influenced by solar activities.Tianwen-1 provided a unique chance to depict the solar wind streams between Earth and Mars during the minimum of Solar Cycle 25.During the three-month cruise phase of Tianwen-1,the solar wind flows were successively observed at Earth,Tianwen-1,and Mars.After the field of view correction and noise reduction,the solar wind velocity and density measured by Tianwen-1 show good agreement with those at Earth and Mars.The results indicate that the performance of the ion analyzer onboard the Tianwen-1 orbiter is reliable and stable.It is worth looking forward to the joint observations of ion escape with other Mars probes in the following Martian years.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61673057 and 61803028)and the Civil Aerospace Advance Research Project.
文摘The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61673057)and the Civil Aerospace Advance Research Project.
文摘The entry vehicle for the Tianwen-1 mission successfully landed on the surface of Mars at 7:18 AM BJT on May 15,2021.This successful landing made China the first country to orbit,land,and release a rover in their first attempt at the Mars exploration.The guidance,navigation,and control(GNC)system plays a crucial role in the entry,descent,and landing(EDL)phases.This study focused on the attitude control component of the GNC system design.The EDL phase can be divided into several sub-phases,namely the angle of attack control phase,lift control phase,parachute descent phase,and powered descent phase.Each sub-phase has unique attitude control requirements and challenges.This paper introduces the key aspects of designing attitude controllers for each phase.Furthermore,flight results are presented and analyzed.
基金The authors are grateful to Ying Li for extraction of the raw pressure and temperature data,Fajun Yi for calibration of pressure sensors,Minwen Guo for providing inertial data,and Francois Forget and Millour Ehouarn for collaboration in the Martian atmospheric model.
文摘The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consisting of a flush air data system and a multilayer temperature-sensing system was installed aboard the entry vehicle.A combined approach was applied in the entry,descent,and landing trajectory reconstruction using all available data obtained by the inertial measurement unit and the flush air data system.An aerodynamic database covering the entire flight regime was generated using computational fluid dynamics methods to assist in the reconstruction process.A preliminary analysis of the trajectory reconstruction result,along with the atmosphere reconstruction and aerodynamic performance,was conducted.The results show that the trajectory agrees closely with the nominal trajectory and the wind-relative attitude.Suspected wind occurred at the end of the trajectory.
文摘To meet the requirements of the Tianwen-1 mission,adaptive entry guidance for entry vehicles,with low lift-to-drag ratios,limited control authority,and large initial state bias,was presented.Typically,the entry guidance law is divided into four distinct phases:trim angle-of-attack phase,range control phase,heading alignment phase,and trim-wing deployment phase.In the range control phase,the predictor–corrector guidance algorithm is improved by planning an on-board trajectory based on the Mars Science Laboratory(MSL)entry guidance algorithm.The nominal trajectory was designed and described using a combination of the downrange value and other states,such as drag acceleration and altitude rate.For a large initial state bias,the nominal downrange value was modified onboard by weighing the landing accuracy,control authority,and parachute deployment altitude.The biggest advantage of this approach is that it allows the successful correction of altitude errors and the avoidance of control saturation.An overview of the optimal trajectory design process,including a discussion of the design of the initial flight path angle,relevant event trigger,and transition conditions between the four phases,was also presented.Finally,telemetry data analysis and post-flight assessment results were used to illustrate the adaptive guidance law,create good conditions for subsequent parachute reduction and power reduction processes,and gauge the success of the mission.
基金This work was supported by the National Natural Science Foundation of China(No.61803028)and Civil Aerospace Advance Research Project.
文摘On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130204,42188101&42241155)the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the support of the Tencent Foundation。
文摘Mars orbiter magnetometer(MOMAG)is one of seven science payloads onboard Tianwen-1’s orbiter.Unlike most of the satellites,Tianwen-1’s orbiter is not magnetically cleaned,and the boom where placed the magnetometer’s sensors is not long enough.These pose many challenges to the magnetic field data processing.In this study,we introduce the in-flight calibration process of the Tianwen-1/MOMAG.The magnetic interference including spacecraft generated dynamic field and the slowlychanging zero offsets are cleaned in sequence.Then the calibrated magnetic field data are compared with the data from the Mars atmosphere and volatile Evolutio N(MAVEN).We find that some physical structures in the solar wind are consistent between the two data sets,and the distributions of the magnetic field strength in the solar wind are very similar.These results suggest that the in-flight calibration of the MOMAG is successful and the MOMAG provides reliable data for scientific research.
文摘Tianwen-1(TW-1)is the first Chinese interplanetary mission to have accomplished orbiting,landing,and patrolling in a single exploration of Mars.After safe landing,it is essential to reconstruct the descent trajectory and determine the landing site of the lander.For this purpose,we processed descent images of the TW-1 optical obstacle-avoidance sensor(OOAS)and digital orthophoto map(DOM)of the landing area using our proposed hybrid-matching method,in which the landing process is divided into two parts.In the first,crater matching is used to obtain the geometric transformations between the OOAS images and DOM to calculate the position of the lander.In the second,feature matching is applied to compute the position of the lander.We calculated the landing site of TW-1 to be 109.9259◦E,25.0659◦N with a positional accuracy of 1.56 m and reconstructed the landing trajectory with a horizontal root mean squared error of 1.79 m.These results will facilitate the analyses of the obstacle-avoidance system and optimize the control strategy in the follow-up planetary-exploration missions.
文摘Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft landing on the surface of Mars.In the process of EDL,the landing platform would encounter a series of irreversible incidents within environmental unpredictability,making this process highly risky.The emergency communication device plays an important role if in the Mars Exploration Program.It can capture and store key dynamic parameters during EDL phase,enabling a high probability of survival in the occurrence of a faulty condition.It can also send the stored data to the Mars obit probe when the communication condition is met.This paper presents a scheme design for the emergency communication device based on its functionality and performance requirements.It includes the design proposal,simulation results,reliability analysis,technical risks and control measures,inheritance and performance compliance which verifies the rationality and correctness of the design.