Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of ex...Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of existing timber floors.Current research at CTU(Czech Technical University)is focused on industrial production of prefabricated timber-concrete panels and their easy and quick assembly,in order to reduce the total cost of production,transport and assembly.A new shear connector was developed for those purposes.It is a punched metal plate fastener with double-sided teeth and omitted area nearby contact of timber and concrete.Direct shear tests were performed on four series of punched metal plate fasteners with different geometrical properties.Results of these tests and determination of slip modules Kser and Ku is presented in this paper.展开更多
To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimen...To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimental results of the innovative steel-plate connections for TCC beams using prefabricated concrete slabs.The steel-plate connections consisted of the screws and the steel-plates.The steel-plates were partly embedded in the concrete slabs.The concrete slabs and the timber beams were connected by screws through the steel-plates.The parameters researched in this article included screw number,angle steel as the reinforcement for anchoring,and shallow notches on the timber surface to restrict the slip of the steel-plates.Experimental results were discussed in terms of failure modes,ultimate bearing capacities,and slip moduli.It was found that increasing the number of screws could lead to the obvious improvement on the ultimate bearing capacities and the slip moduli at the ultimate state;and the angle steel as the reinforcement showed the slight influence on the ultimate bearing capacities and the slip moduli.The application of the shallow notch can greatly improve the ultimate bearing capacities and the slip moduli.The calculation models for the ultimate bearing capacities and the slip moduli of the steel-plate connections with and without shallow notches were proposed,which showed good accuracy compared with the experimental results.展开更多
The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected togeth...The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws(STSs).To more accurately predict the fire performance of TCC slabs,the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study.The interface slip of TCC connections was simulated by a proposed Finite Element(FE)model at room temperature,and different diameter and penetration length screws were considered.The effectiveness of this FE model was validated by comparing with the existing experimental results.Furthermore,the sequentially coupling thermal stress analyses of this model were conducted,and the relationship between the reduction coefficient of connection performance and the effective penetration length of screws was summarized.This study gave the fit-ting expressions for the reduction coefficient of slip modulus and joint strength.Finally,the numerical investiga-tions of the fire performance of TCC slabs considering the char fall-off of Cross Laminated Timber(CLT)were performed to verify the effectiveness of the proposed reduction law.Comparing the fire-resistance time with experimental results showed deviation of the proposed model was−14.02%.展开更多
During the last years, timber-concrete composite(TCC) structures have been extensively used in Europe both in new and existing buildings. Generally speaking, a composite structure combines the advantages of both mater...During the last years, timber-concrete composite(TCC) structures have been extensively used in Europe both in new and existing buildings. Generally speaking, a composite structure combines the advantages of both materials employed: the strength and stiffness of the concrete in compression and the tensile strength, lightweight, low embodied energy, and aesthetical appearance of the timber. The concrete slab provides protection of the timber beams from direct contact with water, which is crucial to ensure the durability of the timber beams, particularly when used for bridges. Different types of connectors can be used to provide force exchange between the concrete slab and the timber beam. The choice of a structurally effective yet cheap shear connection between the concrete topping and the timber joist is crucial to make the TCC structures a viable solution that can compete with reinforced concrete and steel structures. In this paper, the possibilities offered by TCC structures for short-span bridge decks are discussed. The technology of TCC structures and the general design rules are illustrated. Three case studies are reported, including a short-span bridge tested in Colorado, USA, with the timber layer being constructed from recycled utility poles and notch connection; a TCC bridge with glulam beams and triangular notches with epoxyglued rebar connectors built in Portugal; and a TCC bridge with glulam beams and rectangular notches built in Germany. All the solutions were found to be structurally effective and aesthetically pleasing. They can all provide a sustainable option for short-span bridges.展开更多
The Emerging Timber Bridge Program to Sao Paulo state (ETBPSP) was started in 2001 with the main objective of research and development of new technologies for timber bridge construction. After five years of this pro...The Emerging Timber Bridge Program to Sao Paulo state (ETBPSP) was started in 2001 with the main objective of research and development of new technologies for timber bridge construction. After five years of this program eleven demonstration timber bridges were constructed in the State of Sao Paulo, whereas eight composite timber/concrete bridges, one log timber girder bridge with transversal sawn deck, one transversal lumber prestressed timber bridge and one transversal cellular plywood box prestressed bridge. As a final objective is the divulgation of the constructive and structural systems in extension courses to municipal engineers and in a complete publication of timber bridges project plans with the different structural and constructional systems. This paper describes the goals of the MTBPSP, the accomplishments of the program in the first five years, the information sheet of the bridges and outlines some obstacles and opportunities.展开更多
基金the financial support of Czech Technical University in Prague,project No:SGS11/146/OHK1/3T/11.
文摘Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of existing timber floors.Current research at CTU(Czech Technical University)is focused on industrial production of prefabricated timber-concrete panels and their easy and quick assembly,in order to reduce the total cost of production,transport and assembly.A new shear connector was developed for those purposes.It is a punched metal plate fastener with double-sided teeth and omitted area nearby contact of timber and concrete.Direct shear tests were performed on four series of punched metal plate fasteners with different geometrical properties.Results of these tests and determination of slip modules Kser and Ku is presented in this paper.
基金sponsored by the National Natural Science Foundation of China(Grant No.51878344)the Postdoctoral Foundation of Jiangsu Province(Grant No.2021K128B).
文摘To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimental results of the innovative steel-plate connections for TCC beams using prefabricated concrete slabs.The steel-plate connections consisted of the screws and the steel-plates.The steel-plates were partly embedded in the concrete slabs.The concrete slabs and the timber beams were connected by screws through the steel-plates.The parameters researched in this article included screw number,angle steel as the reinforcement for anchoring,and shallow notches on the timber surface to restrict the slip of the steel-plates.Experimental results were discussed in terms of failure modes,ultimate bearing capacities,and slip moduli.It was found that increasing the number of screws could lead to the obvious improvement on the ultimate bearing capacities and the slip moduli at the ultimate state;and the angle steel as the reinforcement showed the slight influence on the ultimate bearing capacities and the slip moduli.The application of the shallow notch can greatly improve the ultimate bearing capacities and the slip moduli.The calculation models for the ultimate bearing capacities and the slip moduli of the steel-plate connections with and without shallow notches were proposed,which showed good accuracy compared with the experimental results.
基金This study was funded by National Natural Science Foundation of China(Grant No.5187082769).
文摘The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws(STSs).To more accurately predict the fire performance of TCC slabs,the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study.The interface slip of TCC connections was simulated by a proposed Finite Element(FE)model at room temperature,and different diameter and penetration length screws were considered.The effectiveness of this FE model was validated by comparing with the existing experimental results.Furthermore,the sequentially coupling thermal stress analyses of this model were conducted,and the relationship between the reduction coefficient of connection performance and the effective penetration length of screws was summarized.This study gave the fit-ting expressions for the reduction coefficient of slip modulus and joint strength.Finally,the numerical investiga-tions of the fire performance of TCC slabs considering the char fall-off of Cross Laminated Timber(CLT)were performed to verify the effectiveness of the proposed reduction law.Comparing the fire-resistance time with experimental results showed deviation of the proposed model was−14.02%.
基金supported by National Natural Science Foundation of China(grant numbers 51508103)
文摘During the last years, timber-concrete composite(TCC) structures have been extensively used in Europe both in new and existing buildings. Generally speaking, a composite structure combines the advantages of both materials employed: the strength and stiffness of the concrete in compression and the tensile strength, lightweight, low embodied energy, and aesthetical appearance of the timber. The concrete slab provides protection of the timber beams from direct contact with water, which is crucial to ensure the durability of the timber beams, particularly when used for bridges. Different types of connectors can be used to provide force exchange between the concrete slab and the timber beam. The choice of a structurally effective yet cheap shear connection between the concrete topping and the timber joist is crucial to make the TCC structures a viable solution that can compete with reinforced concrete and steel structures. In this paper, the possibilities offered by TCC structures for short-span bridge decks are discussed. The technology of TCC structures and the general design rules are illustrated. Three case studies are reported, including a short-span bridge tested in Colorado, USA, with the timber layer being constructed from recycled utility poles and notch connection; a TCC bridge with glulam beams and triangular notches with epoxyglued rebar connectors built in Portugal; and a TCC bridge with glulam beams and rectangular notches built in Germany. All the solutions were found to be structurally effective and aesthetically pleasing. They can all provide a sustainable option for short-span bridges.
文摘The Emerging Timber Bridge Program to Sao Paulo state (ETBPSP) was started in 2001 with the main objective of research and development of new technologies for timber bridge construction. After five years of this program eleven demonstration timber bridges were constructed in the State of Sao Paulo, whereas eight composite timber/concrete bridges, one log timber girder bridge with transversal sawn deck, one transversal lumber prestressed timber bridge and one transversal cellular plywood box prestressed bridge. As a final objective is the divulgation of the constructive and structural systems in extension courses to municipal engineers and in a complete publication of timber bridges project plans with the different structural and constructional systems. This paper describes the goals of the MTBPSP, the accomplishments of the program in the first five years, the information sheet of the bridges and outlines some obstacles and opportunities.