1案例1.1简要案情和病史摘要肖某,男,44岁,既往有高血压病史。某年9月12日因“上腹痛1周”入某区人民医院治疗,经对症支持治疗后症状稍缓解。9月13日转至某市人民医院治疗,入院时血压19.9/14.1 k Pa(149/106 mm Hg),实验室检查示:总胆红...1案例1.1简要案情和病史摘要肖某,男,44岁,既往有高血压病史。某年9月12日因“上腹痛1周”入某区人民医院治疗,经对症支持治疗后症状稍缓解。9月13日转至某市人民医院治疗,入院时血压19.9/14.1 k Pa(149/106 mm Hg),实验室检查示:总胆红素29.88μmol/L↑(参考值3.4~17.1μmol/L),直接胆红素10.69μmol/L↑(参考值0~6.8μmol/L),间接胆红素19.19μmol/L↑(参考值1.7~10.2μmol/L),丙氨酸转氨酶56.02 U/L↑(参考值10~40 U/L),纤维蛋白原5.73 g/L↑(参考值2~4 g/L),D-二聚体4.05 mg/L↑(参考值0~0.5 mg/L)。展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system...Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system resilience,the consequences would be catastrophic,and eventually lead the ecosystem to complete collapse.We capture the collapse process of ecosystems represented by plant-pollinator networks with the k-core nested structural method,and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest k-core towards its largest k-core.Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem.Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions,and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.展开更多
Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this...Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.展开更多
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al...The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.展开更多
据Yang Z 2024年8月1日(Science.2024 Aug 1:eadl5816.doi:10.1126/science.adl5816.)报道,美国劳伦斯伯克利国家实验室、加州大学伯克利分校、西雅图系统生物学研究所和拉瓦尔大学的研究人员对被包裹的DNA的蛋白复合物TIP60空间结构有...据Yang Z 2024年8月1日(Science.2024 Aug 1:eadl5816.doi:10.1126/science.adl5816.)报道,美国劳伦斯伯克利国家实验室、加州大学伯克利分校、西雅图系统生物学研究所和拉瓦尔大学的研究人员对被包裹的DNA的蛋白复合物TIP60空间结构有了更深的了解。展开更多
According to the most recent Pteridophyte Phylogeny Group (PPG), eupolypods, or eupolypod ferns, are the most differentiated and diversified of all major lineages of ferns, accounting for more than half of extant fern...According to the most recent Pteridophyte Phylogeny Group (PPG), eupolypods, or eupolypod ferns, are the most differentiated and diversified of all major lineages of ferns, accounting for more than half of extant fern diversity. However, the evolutionary history of eupolypods remains incompletely understood, and conflicting ideas and scenarios exist in the literature about many aspects of this history. Due to a scarce fossil record, the diversification time of eupolypods mainly inferred from molecular dating approaches. Currently, there are two molecular dating results: the diversification of eupolypods occurred either in the Late Cretaceous or as early as in the Jurassic. This study uses the Bayesian tip-dating approach for the first time to infer the diversification time for eupolypods. Our analyses support the Jurassic diversification for eupolypods. The age estimations for the diversifications of the whole clade and one of its two subclades (the eupolypods II) are both in the Jurassic, which adds to the growing body of data on a much earlier diversification of Polypodiales in the Mesozoic than previously suspected.展开更多
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72071153 and 72231008)the Natural Science Foundation of Shaanxi Province(Grant No.2020JM-486)the Fund of the Key Laboratory of Equipment Integrated Support Technology(Grant No.6142003190102)。
文摘Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system resilience,the consequences would be catastrophic,and eventually lead the ecosystem to complete collapse.We capture the collapse process of ecosystems represented by plant-pollinator networks with the k-core nested structural method,and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest k-core towards its largest k-core.Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem.Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions,and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.
基金This work was supported by grants from the construction and operation of the Food Nutrition and Health Research Center of Guangdong Academy of Agricultural Sciences,China(XTXM 202205)the earmarked fund for CARS-10Sweetpotato,and the Guangdong Modern Agro-industry Technology Research System,China(2022KJ111).
文摘Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3502600)Shenzhen Science and Technology Program(Grant No.JCYJ20220530161813029).
文摘The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.
文摘据Yang Z 2024年8月1日(Science.2024 Aug 1:eadl5816.doi:10.1126/science.adl5816.)报道,美国劳伦斯伯克利国家实验室、加州大学伯克利分校、西雅图系统生物学研究所和拉瓦尔大学的研究人员对被包裹的DNA的蛋白复合物TIP60空间结构有了更深的了解。
文摘According to the most recent Pteridophyte Phylogeny Group (PPG), eupolypods, or eupolypod ferns, are the most differentiated and diversified of all major lineages of ferns, accounting for more than half of extant fern diversity. However, the evolutionary history of eupolypods remains incompletely understood, and conflicting ideas and scenarios exist in the literature about many aspects of this history. Due to a scarce fossil record, the diversification time of eupolypods mainly inferred from molecular dating approaches. Currently, there are two molecular dating results: the diversification of eupolypods occurred either in the Late Cretaceous or as early as in the Jurassic. This study uses the Bayesian tip-dating approach for the first time to infer the diversification time for eupolypods. Our analyses support the Jurassic diversification for eupolypods. The age estimations for the diversifications of the whole clade and one of its two subclades (the eupolypods II) are both in the Jurassic, which adds to the growing body of data on a much earlier diversification of Polypodiales in the Mesozoic than previously suspected.