We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord....Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considerin...This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.展开更多
Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography...Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular.展开更多
The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topog...The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topography wind farms in Guangxi,Yunnan province in China.Firstly,we simulated the wind resource status of the anemometer tower in the Meteodyn WT software.Secondly,we compared the simulated wind resource with the actual measured data by the anemometer tower in the same situation.Thirdly,we analyzed the influence of anemometer tower location and quantity in the accuracy of wind resource assessment through the comparison results.The results showed that the range which the anemometer tower can represent is limited(<5 kilometers),and the prediction error more than 5%.Besides,the anemometer towers in special terrain areas(such as wind acceleration areas)cannot be used as a representative choice.The relative error of the simulated average annual wind speed by choose different number of anemometer towers is about 4%,and the grid-connected power generation more than 6%.The representative effect of anemometer towers is of crucial for improving the accuracy of wind resource assessment in engineering applications.展开更多
High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy...High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.展开更多
We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to sol...We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.展开更多
As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese N...As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.展开更多
In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic ...In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.展开更多
Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the und...Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.展开更多
Based on the latest submarine topography data of the China 908 Project (China offshore marine environmental comprehensive investigation and assessment),we analyzed the general China offshore submarine topographical ...Based on the latest submarine topography data of the China 908 Project (China offshore marine environmental comprehensive investigation and assessment),we analyzed the general China offshore submarine topographical characteristics and the factors influencing its development.The submarine topography off the coast of China follows the NW-SE trend of the land topography.The gradient of the submarine topography ranges from 0.2% to 1.6% with an average gradient of about 0.8%.The depth contours run mostly parallel to the coast,and extend out to sea in estuary areas.The submarine topography is dominated by the geological structure,which shows the typical characteristics of two uplifts and two subsidence events from north to south.The geological structure combined with the different sedimentary environments and complex hydrodynamic conditions produced topography that can be characterized by three types:sedimentary basins,compressionuplift,and transition form.In the sedimentary basin and compression-uplift regions,the topographical undulation is small,sediments are fine-grained,and the currents flow in a single direction,leading to bays with sedimentary plains and underwater accumulation slopes,which are of the same tectonic origin.Transition-type topography is characterized by strong undulations and mixed-size sediment particles,terraces and scarps inshore and shelf plains and erosion-deposition landforms offshore.This is a result of incomplete fault block development and repeated transgressions.In the deposition reformation regions (transition form type),the topography has strong undulations,the sediments are coarse,tidal sand ridges are well-developed at terrigenoussupplied estuaries and convergence zones,and the Holocene sediments are thick,transformed by tides,river runoff,and currents.展开更多
Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by whi...Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.展开更多
A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency wav...A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency waves mostly is maximal height of topography and topographic slope. The former makes frequency of topographic Rossby waves decrease, the latter makes Rossby waves instable. Moreover, when topographic slope is appropriate, it can also make Rossby waves turn into low-frequency waves.展开更多
Surface of Al 2O 3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of the microelectromechanical system(MEMS). It is indicated that the statisti...Surface of Al 2O 3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of the microelectromechanical system(MEMS). It is indicated that the statistic parameters of surface topography processed by the excimer laser have an obvious regularity. The arithmetic-mean value R a and the root-mean square value R q change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them.A simplified model is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore,the surfaces processed by excimer laser are greatly flat. Skewness root-mean-square value Z· q changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing.展开更多
The concept of creating a Topography integrated urban center is to create an urban center that integrated with the city.The first step of the Concept is to settle by using the natural elevation in the land and to crea...The concept of creating a Topography integrated urban center is to create an urban center that integrated with the city.The first step of the Concept is to settle by using the natural elevation in the land and to create volumes compatible with land by raising together with the elevation.While the passenger circulation at starting elevation is moved into a project with the cavestyle volume settled in land elevation.The new area of the square to be defined in the center of the building is intended to form an area combining the neighboring squares Kartal Square and Freedom Square,as well as contributing to the silhouette of Kartal from the sea with the location of the square and building.The project is a central complex design that deals with various urban problems thanks to professionals,local people of Kartal,and clubs which established with the municipality in a comprehensive way to search for solutions to be organized urban workshops and conferences.展开更多
Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description fo...Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description for surface roughness that topographic surfaces are statistically self-similar and can be quantitatively evaluated by fractal parameters.The change regularity of worn surface topography is one of the most important aspects of running-in study.However,the existing research normally adopts only one friction matching pair to explore the surface topography change,which interrupts the running-in wear process and makes the experimental result lack authenticity and objectivity.In this paper,to investigate the change regularity of surface topography during the real running-in process,a series of running-in tests by changing friction pairs under the same operating conditions are conducted on UMT-II Universal Multifunction Tester.The surface profile data are acquired by MiaoXAM2.5X-50X Ultrahigh Precision Surface 3D Profiler and analyzed using fractal dimension D,scale coefficient C and characteristic roughness Ra *based on root mean square(RMS) method.The characterization effects of the three parameters are discussed and compared.The results obtained show that there exists remarkable fractal feature of surface topography during running-in process,both D and Ra *increase gradually,while C decreases slowly as the wear-in process goes on,and all parameters tend to be stable when the wear process steps into the normal wear process.Ra *illustrates higher sensitivity for rough surface characterization compared with the other two parameters.In addition,the running-in test carried with a set of identical surface properties is more scientific and reasonable than the traditional one.The proposed research further indicates that the fractal method can quantitatively measure the rough surface,which also provides an evidence for running-in process identification and tribology design.展开更多
Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to t...Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to the west of a major scenic area, causing 25 deaths and injuring 525, and the Park was seriously affected. The objective of this study was to explore the controls of seismogenic fault and topographic factors on the spatial patterns of these landslides. Immediately after the main shock, field survey, remote-sensing investigations, and statistical and spatial analysis were undertaken. At least 2212 earthquake-triggered landslides were identified, covering a total area of 11.8 km^2. Thesewere mainly shallow landslides and rock falls. Results demonstrated that landslides exhibited a close spatial correlation with seismogenic faults. More than 85% of the landslides occurred at 2200 to 3700 m elevations. The largest quantity of landslides was recorded in places with local topographic reliefs ranging from 200 to 500 m. Slopes in the range of ~20°-50° are the most susceptible to failure. Landslides occurred mostly on slopes facing east-northeast(ENE), east(E), east-southeast(ESE), and southeast(SE), which were nearly vertical to the orientation of the seismogenic fault slip. The back-slope direction and thin ridge amplification effects were documented. These results provide insights on the control of the spatial pattern of earthquake-triggered landslides modified by the synergetic effect of seismogenic faults and topography.展开更多
This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses invo...This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
文摘Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
文摘This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.
基金The National Natural Science Foundation of China under contract Nos 51839002 and U2006207.
文摘Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular.
基金the financial support by the National Natural Science Foundation of China(No.52176212).
文摘The typical location and number of anemometer towers in the assessed area are the key to the accuracy of wind resource assessment in complex topography.As calculation examples,this paper used two typical complex topography wind farms in Guangxi,Yunnan province in China.Firstly,we simulated the wind resource status of the anemometer tower in the Meteodyn WT software.Secondly,we compared the simulated wind resource with the actual measured data by the anemometer tower in the same situation.Thirdly,we analyzed the influence of anemometer tower location and quantity in the accuracy of wind resource assessment through the comparison results.The results showed that the range which the anemometer tower can represent is limited(<5 kilometers),and the prediction error more than 5%.Besides,the anemometer towers in special terrain areas(such as wind acceleration areas)cannot be used as a representative choice.The relative error of the simulated average annual wind speed by choose different number of anemometer towers is about 4%,and the grid-connected power generation more than 6%.The representative effect of anemometer towers is of crucial for improving the accuracy of wind resource assessment in engineering applications.
基金Projects(50975237,51005184) supported by the National Natural Science Foundation of China
文摘High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.
基金financially supported by the National High Technology Research and Development Program of China(No.2012AA09A20105)the National Science Foundation Network(No.41574127)
文摘We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.
基金supported by National Basic Research Program of China(Grant Nos.2013CBA01804 and 2012CB957702)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs(Grant No.CHINARE-02-02)the National Science Foundation of China(Grant No.41101071)
文摘As fundamental parameters of the Antarctic Ice Sheet,ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica.During CHINARE 24(the 24 th Chinese National Antarctic Research Expedition,2007/08),the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station,East Antarctica.Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the "Chinese Wall",with the thickest ice being 3444 m,and the thinnest ice 1255 m.The average bedrock elevation is 1722 m,while the minimum is just 604 m.Compared with the northern side of the ice divide,the ice thickness is a little greater and the subglacial topography lower on the southern side,which is also characterized by four deep valleys.We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area,subglacial lakes,or water bodies along the "Chinese Wall".Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the "Chinese Wall" are consistent with our results,but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely.The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this "inaccessible" region.These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM's geological and deep ice core drilling sites in the Dome A region.
基金sponsored by the National 973 Program of China(Grant No.2009CB219505)International Science&Technology Cooperation Program of China(Grant No.2010DFA21630)
文摘In order to eliminate the effect of ocean bottom topography on seismic wave field,we transformed curved(x,z)coordinate system grids into rectangular(ξ,η)coordinate system grids and derived a 2-D scalar acoustic wave equation in theξ,ηdomain.The seismic wave field collected at the sea surface was downward continued to the ocean bottom by the inverse finite difference method with the water velocity and then was reversely continued to the ocean surface by the finite difference method using the layer velocity from just below the ocean bottom in the(ξ,η)domain.Simulation calculations and practical application show that this method can not only remove the reflection travel time distortion but also correct the dynamic parameter changes caused by the ocean bottom topography.The inverted velocity after wave field continuation is much more accurate than before continuation and the image section was greatly improved compared to the original wave field.
文摘Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.
基金granted by the National Science Foundation of China (No. 41276058)the project of integrated achievement on investigation of submarine topography and geomorphology in offshore China (No. 908-ZC-I-07)the State Oceanic Administration public welfare research project (No. 201105001, No. 2012418004)
文摘Based on the latest submarine topography data of the China 908 Project (China offshore marine environmental comprehensive investigation and assessment),we analyzed the general China offshore submarine topographical characteristics and the factors influencing its development.The submarine topography off the coast of China follows the NW-SE trend of the land topography.The gradient of the submarine topography ranges from 0.2% to 1.6% with an average gradient of about 0.8%.The depth contours run mostly parallel to the coast,and extend out to sea in estuary areas.The submarine topography is dominated by the geological structure,which shows the typical characteristics of two uplifts and two subsidence events from north to south.The geological structure combined with the different sedimentary environments and complex hydrodynamic conditions produced topography that can be characterized by three types:sedimentary basins,compressionuplift,and transition form.In the sedimentary basin and compression-uplift regions,the topographical undulation is small,sediments are fine-grained,and the currents flow in a single direction,leading to bays with sedimentary plains and underwater accumulation slopes,which are of the same tectonic origin.Transition-type topography is characterized by strong undulations and mixed-size sediment particles,terraces and scarps inshore and shelf plains and erosion-deposition landforms offshore.This is a result of incomplete fault block development and repeated transgressions.In the deposition reformation regions (transition form type),the topography has strong undulations,the sediments are coarse,tidal sand ridges are well-developed at terrigenoussupplied estuaries and convergence zones,and the Holocene sediments are thick,transformed by tides,river runoff,and currents.
文摘Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.
文摘A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency waves mostly is maximal height of topography and topographic slope. The former makes frequency of topographic Rossby waves decrease, the latter makes Rossby waves instable. Moreover, when topographic slope is appropriate, it can also make Rossby waves turn into low-frequency waves.
文摘Surface of Al 2O 3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of the microelectromechanical system(MEMS). It is indicated that the statistic parameters of surface topography processed by the excimer laser have an obvious regularity. The arithmetic-mean value R a and the root-mean square value R q change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them.A simplified model is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore,the surfaces processed by excimer laser are greatly flat. Skewness root-mean-square value Z· q changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing.
文摘The concept of creating a Topography integrated urban center is to create an urban center that integrated with the city.The first step of the Concept is to settle by using the natural elevation in the land and to create volumes compatible with land by raising together with the elevation.While the passenger circulation at starting elevation is moved into a project with the cavestyle volume settled in land elevation.The new area of the square to be defined in the center of the building is intended to form an area combining the neighboring squares Kartal Square and Freedom Square,as well as contributing to the silhouette of Kartal from the sea with the location of the square and building.The project is a central complex design that deals with various urban problems thanks to professionals,local people of Kartal,and clubs which established with the municipality in a comprehensive way to search for solutions to be organized urban workshops and conferences.
基金supported by National Natural Science Foundation of China (Grant No.50975276,Grant No.50475164)National Basic Research Program of China (973 Program,Grant No.2007CB607605)Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)
文摘Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description for surface roughness that topographic surfaces are statistically self-similar and can be quantitatively evaluated by fractal parameters.The change regularity of worn surface topography is one of the most important aspects of running-in study.However,the existing research normally adopts only one friction matching pair to explore the surface topography change,which interrupts the running-in wear process and makes the experimental result lack authenticity and objectivity.In this paper,to investigate the change regularity of surface topography during the real running-in process,a series of running-in tests by changing friction pairs under the same operating conditions are conducted on UMT-II Universal Multifunction Tester.The surface profile data are acquired by MiaoXAM2.5X-50X Ultrahigh Precision Surface 3D Profiler and analyzed using fractal dimension D,scale coefficient C and characteristic roughness Ra *based on root mean square(RMS) method.The characterization effects of the three parameters are discussed and compared.The results obtained show that there exists remarkable fractal feature of surface topography during running-in process,both D and Ra *increase gradually,while C decreases slowly as the wear-in process goes on,and all parameters tend to be stable when the wear process steps into the normal wear process.Ra *illustrates higher sensitivity for rough surface characterization compared with the other two parameters.In addition,the running-in test carried with a set of identical surface properties is more scientific and reasonable than the traditional one.The proposed research further indicates that the fractal method can quantitatively measure the rough surface,which also provides an evidence for running-in process identification and tribology design.
基金supported by the Key Laboratory Program for Mountain Hazards and Earth Surface Process, CAS (Grant No. KLMHESP17-06)International Science Program-Silk Road Disaster Risk Reduction (Grant No. 131551KYSB20160002)+2 种基金Major International (Regional) Joint Research Project (Grant No.41520104002) Key Research Program of Frontier Sciences,CAS (Grant No. QYZDY-SSWDQC006) 135 Strategic Program of the Institute of Mountain Hazards and Environment, CAS, NO. SDS-135-1701
文摘Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to the west of a major scenic area, causing 25 deaths and injuring 525, and the Park was seriously affected. The objective of this study was to explore the controls of seismogenic fault and topographic factors on the spatial patterns of these landslides. Immediately after the main shock, field survey, remote-sensing investigations, and statistical and spatial analysis were undertaken. At least 2212 earthquake-triggered landslides were identified, covering a total area of 11.8 km^2. Thesewere mainly shallow landslides and rock falls. Results demonstrated that landslides exhibited a close spatial correlation with seismogenic faults. More than 85% of the landslides occurred at 2200 to 3700 m elevations. The largest quantity of landslides was recorded in places with local topographic reliefs ranging from 200 to 500 m. Slopes in the range of ~20°-50° are the most susceptible to failure. Landslides occurred mostly on slopes facing east-northeast(ENE), east(E), east-southeast(ESE), and southeast(SE), which were nearly vertical to the orientation of the seismogenic fault slip. The back-slope direction and thin ridge amplification effects were documented. These results provide insights on the control of the spatial pattern of earthquake-triggered landslides modified by the synergetic effect of seismogenic faults and topography.
基金supported by the National Science Foundation of China (51622803)Technology Research and Development Project of CHINA RAILWAY (2017G008-H)China Scholarship Council (File No: 201806050121) for financial support to visit Purdue University, the United States
文摘This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed.