The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the M...We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series.展开更多
Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing con...Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.展开更多
As a fundamental problem in the field of the network science,the study of topological evolution model is of great significance for revealing the inherent dynamics and mechanisms of complex network evolution.In order t...As a fundamental problem in the field of the network science,the study of topological evolution model is of great significance for revealing the inherent dynamics and mechanisms of complex network evolution.In order to study the influence of different scales of preferential attachment on topological evolution,a topological evolution model based on the attraction of the motif vertex is proposed.From the perspective of network motif,this model proposes the concept of attraction of the motif vertex based on the degree of the motif,quantifies the influence of local structure on the node preferential attachment,and performs the preferential selection of the new link based on the Local World model.The simulation experiments show that the model has the small world characteristic apparently,and the clustering coefficient varies with the scale of the local world.The degree distribution of the model changes from power-law distribution to exponential distribution with the change of parameters.In some cases,the piecewise power-law distribution is presented.In addition,the proposed model can present a network with different matching patterns as the parameters change.展开更多
Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works.This paper is a part of a general research designed to the application of topology as a new approach for th...Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works.This paper is a part of a general research designed to the application of topology as a new approach for the modeling of mechatronic systems.Particularly,the modeling of a one stage spur gear transmission using a topological approach is tackled.This approach is based on the concepts of topological collections and transformations and implemented using the MGS(modeling of general systems)language.The topological collections are used to specify the interconnection laws of the one stage spur gear transmission and the transformations are used to specify the local behavior laws of its different components.In order to validate this approach,simulation results are presented and compared with those obtained with MODELICA language using Dymola solver.Since good results are achieved,this approach might be used as a basis of unification for the modeling of mechatronic systems.展开更多
We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly ...We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.展开更多
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for...Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.展开更多
A conformal structure of a prion protein is thought to cause a prion disease by S.B. Prusiner's theory. Knot theory in mathematics is useful in studying a topological difference of topological objects. In this articl...A conformal structure of a prion protein is thought to cause a prion disease by S.B. Prusiner's theory. Knot theory in mathematics is useful in studying a topological difference of topological objects. In this article, concerning this conjecture, a topological model of prion proteins (PrPc, PrPsc) called a prion-tangle is introduced to discuss a question of whether or not the prion proteins are easily entangled by an approach from the mathematical knot theory. It is noted that any prion-string with trivial loop which is a topological model of a prion protein can not be entangled topologically unless a certain restriction such as "Rotaxsane Property" is imposed on it. Nevertheless, it is shown that any two split prion-tangles can be changed by a one-crossing change into a non-split prion-tangle with the given prion-tangles contained while some attentions are paid to the loop systems. The proof is made by a mathematical argument on knot theory of spatial graphs. This means that the question above is answered affirmatively in this topological model of prion-tangles. Next, a question of what is the simplest topological situation of the non-split prion-tangles is considered. By a mathematical argument, it is determined for every n 〉 1 that the minimal crossing number of n-string non-split prion-tangles is 2n or 2n-2, respectively, according to whether or not the assumption that the loop system is a trivial link is counted.展开更多
Hermetically Sealed Electromagnetic Relay(HSER), used in aviation and aerospace,demands high reliability due to its critical applications. Given its complex operating conditions, efficient thermal analysis is essentia...Hermetically Sealed Electromagnetic Relay(HSER), used in aviation and aerospace,demands high reliability due to its critical applications. Given its complex operating conditions, efficient thermal analysis is essential for optimizing reliability. The commonly used Finite Element Method(FEM) is often time-consuming and may not be efficient or adaptable for complex multi-dimensional system calculations and design processes. This paper introduces an analysis method for thermal networks based on matrix perspective technology, encompassing matrix transformation, backpropagation of the heat path model, temperature rise calculation, solution comparison, and product implementation. Using the similarity theory of heat circuits, a basic thermal unit is established. Based on the fundamental connection between key components, a thermal network for a typical HSER is designed. An experimental system is set up, and the thermal network model's accuracy is confirmed using test data. Employing the topology analysis method, the topology of the thermal network is analyzed under both coil-energized and de-energized states. Potential thermal paths are identified, leading to optimized solutions for the HSER. Utilizing these solutions, the thermal path matrix topology model is backpropagated to the thermal path for temperature rise calculations. When compared to prototype HSER test data, the efficiency and accuracy of this matrix topology-based analysis method are confirmed.展开更多
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
The maintaining overheads of Distributed Hash Table (DHT) topology have recently received considerable attention. This paper presents a novel SHT (Session Heterogeneity Topology) model, in which DHT is reconstructed w...The maintaining overheads of Distributed Hash Table (DHT) topology have recently received considerable attention. This paper presents a novel SHT (Session Heterogeneity Topology) model, in which DHT is reconstructed with session hetero- geneity. SHT clusters nodes by means of session heterogeneity among nodes and selects the stable nodes as the participants of DHT. With an evolving process, this model gradually makes DHT stable and reliable. Therefore the high maintaining overheads for DHT are effectively controlled. Simulation with real traces of session distribution showed that the maintaining overheads are reduced dramatically and that the data availability is greatly improved.展开更多
On the basis of analysis of the principle of delay restoration in a disturbed schedule, a heuristic algorithm for rescheduling trains is developed by restoring the total delay of the disturbed schedule. A discrete eve...On the basis of analysis of the principle of delay restoration in a disturbed schedule, a heuristic algorithm for rescheduling trains is developed by restoring the total delay of the disturbed schedule. A discrete event topologic model is derived from the original undisturbed train diagram and a back propagation analysis method is used to label the maximum buffer time of each point in the model. In order to analyze the principle of delay restoration, the concept of critical delay is developed from the labeled maximum buffer time. The critical delay is the critical point of successful delay restoration. All the disturbed trains are classified into the strong-delayed trains and the weak-delayed trains by the criterion of the critical delay. Only the latter, in which actual delay is less than its critical delay, can be adjusted to a normal running state during time horizon considered. The heuristic algorithm is used to restore all the disturbed trains according to their critical details. The cores of the algorithm are the iterative repair technique and two repair methods for the two kinds of trains. The algorithm searches iteratively the space of possible conflicts caused by disturbed trains using an earfiest-delay-first heuristics and always attempts to repair the earliest constraint violation. The algorithm adjusts the weak-delayed trains directly back to the normal running state using the buffer time of the original train diagram. For the strong-delayed trains,the algorithm uses an utility function with some weighted attributes to determine the dynamic priority of the trains, and resolves the conflict according to the calculated dynamic priority. In the end, the experimental results show that the algorithm produces "good enough" schedules effectively and efficiently in disturbed situations.展开更多
We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.
Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed m...Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.展开更多
Based on the status quantity of water resources in Xi′an region, a commentary on many math models is given for water resources operation and management, and the visual model is provided to solve practical problems. ...Based on the status quantity of water resources in Xi′an region, a commentary on many math models is given for water resources operation and management, and the visual model is provided to solve practical problems. In this model, the information for decision is visible in GIS (Geographic Information Systems) and topological figures. With object orientation methods, the objects are described in proprieties, methods, relations and time periods. The simulation process of the model is developed with Delphi and MapInfo, and the real decision scheme could be examined and practice decision process can be simulated from which. Decision analysis conducted from visual conditions is believable. The exploration to visual model is a beginning of practice research, much more study of which still needs to do.展开更多
In this paper,we focus on p-sober spaces and prove that(1)the To space X is p-sober if and only if the Smyth power space of X is p-sober;(2)the space X has a p-sober dcpo model if and only if X is T_(1)and p-sober;(3)...In this paper,we focus on p-sober spaces and prove that(1)the To space X is p-sober if and only if the Smyth power space of X is p-sober;(2)the space X has a p-sober dcpo model if and only if X is T_(1)and p-sober;(3)every non-p-sober T_(0)space does not have a p-sobrification;(4)the T_(0)space X is sober if and only if X is p-sober and PD.展开更多
Three-dimensional (3D) land development and utilization has become the trend for urban planning in the current metropolis.This paper presents a method for building a 3D cadastral management system from survey plans wi...Three-dimensional (3D) land development and utilization has become the trend for urban planning in the current metropolis.This paper presents a method for building a 3D cadastral management system from survey plans with SketchUp.It concentrates on the geometric representation and topological consistent maintenance of 3D cadastral objects.In this system a complete topological model is built to express the body construction and spatial relationships among 3D property units.SketchUp is used to automatically construct 3D models with attributes and thematic information from 2D survey plans.Spatial topologic relationships and operations are analyzed with the programming and development of Ruby language.The resulting system can manage 3D cadastral objects and manipulate them with spatial operations to support spatial analysis.展开更多
Medieval mosques in Algeria represent an important architectural heritage that deserves to be identifed,studied and preserved.Considering the period spanning the 7th to 15th centuries,this study investigated medieval ...Medieval mosques in Algeria represent an important architectural heritage that deserves to be identifed,studied and preserved.Considering the period spanning the 7th to 15th centuries,this study investigated medieval mosques in Algeria,spatially and socially,to identify the architectural genotype and to establish whether such mosques present the same topological model that governs their spatial properties.This study adopted a new approach to spatial analysis of mosques that could be applied to improve understanding of other religious buildings.Space syntax as an architectural analysis tool can be used as a qualitative method for drawing justifed graphs and comparing them visually and quantitatively,calculating syntactic measures and integrating visibility graph analysis to identify spatial types,reveal architectural genotypes and explain social logic.The fndings demonstrate how space syntax with topological analysis and syntactic measures could be used to provide new understanding for architects,students and all those interested in heritage,architecture and design,by uncovering hidden structures and revealing the social logic embodied in the spatial confgurations of mosques.展开更多
Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC...Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.展开更多
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry
文摘We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series.
基金Supported by the National Natural Science Foundation of China (No. 79931000) and The State Major Basic Research Development Program (No. G20000263).
文摘Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.
基金This work is supported by the National Natural Science Foundation of China(No.61803384).
文摘As a fundamental problem in the field of the network science,the study of topological evolution model is of great significance for revealing the inherent dynamics and mechanisms of complex network evolution.In order to study the influence of different scales of preferential attachment on topological evolution,a topological evolution model based on the attraction of the motif vertex is proposed.From the perspective of network motif,this model proposes the concept of attraction of the motif vertex based on the degree of the motif,quantifies the influence of local structure on the node preferential attachment,and performs the preferential selection of the new link based on the Local World model.The simulation experiments show that the model has the small world characteristic apparently,and the clustering coefficient varies with the scale of the local world.The degree distribution of the model changes from power-law distribution to exponential distribution with the change of parameters.In some cases,the piecewise power-law distribution is presented.In addition,the proposed model can present a network with different matching patterns as the parameters change.
文摘Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works.This paper is a part of a general research designed to the application of topology as a new approach for the modeling of mechatronic systems.Particularly,the modeling of a one stage spur gear transmission using a topological approach is tackled.This approach is based on the concepts of topological collections and transformations and implemented using the MGS(modeling of general systems)language.The topological collections are used to specify the interconnection laws of the one stage spur gear transmission and the transformations are used to specify the local behavior laws of its different components.In order to validate this approach,simulation results are presented and compared with those obtained with MODELICA language using Dymola solver.Since good results are achieved,this approach might be used as a basis of unification for the modeling of mechatronic systems.
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
基金Supported by the National Natural Science Foundation of China (Grant No.11774152)National Key R&D Program of China(Grant No.2016YFA0300401)。
文摘We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.
基金the Science and Technology Cooperation Research and Development Project of Sichuan Provincial Academy and University(Grant No.2019YFSY0024)the Key Research and Development Program in Sichuan Province of China(Grant No.2019YFG0050)the Natural Science Foundation of Guangxi Province of China(Grant No.AD19245021).
文摘Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.
文摘A conformal structure of a prion protein is thought to cause a prion disease by S.B. Prusiner's theory. Knot theory in mathematics is useful in studying a topological difference of topological objects. In this article, concerning this conjecture, a topological model of prion proteins (PrPc, PrPsc) called a prion-tangle is introduced to discuss a question of whether or not the prion proteins are easily entangled by an approach from the mathematical knot theory. It is noted that any prion-string with trivial loop which is a topological model of a prion protein can not be entangled topologically unless a certain restriction such as "Rotaxsane Property" is imposed on it. Nevertheless, it is shown that any two split prion-tangles can be changed by a one-crossing change into a non-split prion-tangle with the given prion-tangles contained while some attentions are paid to the loop systems. The proof is made by a mathematical argument on knot theory of spatial graphs. This means that the question above is answered affirmatively in this topological model of prion-tangles. Next, a question of what is the simplest topological situation of the non-split prion-tangles is considered. By a mathematical argument, it is determined for every n 〉 1 that the minimal crossing number of n-string non-split prion-tangles is 2n or 2n-2, respectively, according to whether or not the assumption that the loop system is a trivial link is counted.
基金supported by the National Natural Science Foundation of China (No. 52177134)。
文摘Hermetically Sealed Electromagnetic Relay(HSER), used in aviation and aerospace,demands high reliability due to its critical applications. Given its complex operating conditions, efficient thermal analysis is essential for optimizing reliability. The commonly used Finite Element Method(FEM) is often time-consuming and may not be efficient or adaptable for complex multi-dimensional system calculations and design processes. This paper introduces an analysis method for thermal networks based on matrix perspective technology, encompassing matrix transformation, backpropagation of the heat path model, temperature rise calculation, solution comparison, and product implementation. Using the similarity theory of heat circuits, a basic thermal unit is established. Based on the fundamental connection between key components, a thermal network for a typical HSER is designed. An experimental system is set up, and the thermal network model's accuracy is confirmed using test data. Employing the topology analysis method, the topology of the thermal network is analyzed under both coil-energized and de-energized states. Potential thermal paths are identified, leading to optimized solutions for the HSER. Utilizing these solutions, the thermal path matrix topology model is backpropagated to the thermal path for temperature rise calculations. When compared to prototype HSER test data, the efficiency and accuracy of this matrix topology-based analysis method are confirmed.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
基金Projects supported by the Science & Technology Committee of Shanghai Municipality Key Technologies R & D Project (No.03dz15027) and the Science & Technology Committee of ShanghaiMunicipality Key Project (No. 025115032), China
文摘The maintaining overheads of Distributed Hash Table (DHT) topology have recently received considerable attention. This paper presents a novel SHT (Session Heterogeneity Topology) model, in which DHT is reconstructed with session hetero- geneity. SHT clusters nodes by means of session heterogeneity among nodes and selects the stable nodes as the participants of DHT. With an evolving process, this model gradually makes DHT stable and reliable. Therefore the high maintaining overheads for DHT are effectively controlled. Simulation with real traces of session distribution showed that the maintaining overheads are reduced dramatically and that the data availability is greatly improved.
文摘On the basis of analysis of the principle of delay restoration in a disturbed schedule, a heuristic algorithm for rescheduling trains is developed by restoring the total delay of the disturbed schedule. A discrete event topologic model is derived from the original undisturbed train diagram and a back propagation analysis method is used to label the maximum buffer time of each point in the model. In order to analyze the principle of delay restoration, the concept of critical delay is developed from the labeled maximum buffer time. The critical delay is the critical point of successful delay restoration. All the disturbed trains are classified into the strong-delayed trains and the weak-delayed trains by the criterion of the critical delay. Only the latter, in which actual delay is less than its critical delay, can be adjusted to a normal running state during time horizon considered. The heuristic algorithm is used to restore all the disturbed trains according to their critical details. The cores of the algorithm are the iterative repair technique and two repair methods for the two kinds of trains. The algorithm searches iteratively the space of possible conflicts caused by disturbed trains using an earfiest-delay-first heuristics and always attempts to repair the earliest constraint violation. The algorithm adjusts the weak-delayed trains directly back to the normal running state using the buffer time of the original train diagram. For the strong-delayed trains,the algorithm uses an utility function with some weighted attributes to determine the dynamic priority of the trains, and resolves the conflict according to the calculated dynamic priority. In the end, the experimental results show that the algorithm produces "good enough" schedules effectively and efficiently in disturbed situations.
文摘We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.
基金supported by the National Basic Research Program of China(Grant No. 2009CB929302)the National Natural Science Foundation of China (Grant No. 91121015)+1 种基金the Ministry of Education of China (GrantNo. B06011)the U.S. National Science Foundation (Grant No. PHY-0925174)
文摘Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.
基金″Ninth-Five-Year Plan″for Science and Technology in China(95 /91 2 /0 5 /0 2 )
文摘Based on the status quantity of water resources in Xi′an region, a commentary on many math models is given for water resources operation and management, and the visual model is provided to solve practical problems. In this model, the information for decision is visible in GIS (Geographic Information Systems) and topological figures. With object orientation methods, the objects are described in proprieties, methods, relations and time periods. The simulation process of the model is developed with Delphi and MapInfo, and the real decision scheme could be examined and practice decision process can be simulated from which. Decision analysis conducted from visual conditions is believable. The exploration to visual model is a beginning of practice research, much more study of which still needs to do.
基金Supported by the National Natural Science Foundation of China(Grant No.11531009)。
文摘In this paper,we focus on p-sober spaces and prove that(1)the To space X is p-sober if and only if the Smyth power space of X is p-sober;(2)the space X has a p-sober dcpo model if and only if X is T_(1)and p-sober;(3)every non-p-sober T_(0)space does not have a p-sobrification;(4)the T_(0)space X is sober if and only if X is p-sober and PD.
基金the National Natural Science Foundation of China (No.41001307,No.40871206)the National High Technology Research and DevelopmentProgram of China (No.2008AA121600)the Foundation of Key Laboratory of Spatial Data Mining & Information Sharing (LSDMIS), Ministry of Education.
文摘Three-dimensional (3D) land development and utilization has become the trend for urban planning in the current metropolis.This paper presents a method for building a 3D cadastral management system from survey plans with SketchUp.It concentrates on the geometric representation and topological consistent maintenance of 3D cadastral objects.In this system a complete topological model is built to express the body construction and spatial relationships among 3D property units.SketchUp is used to automatically construct 3D models with attributes and thematic information from 2D survey plans.Spatial topologic relationships and operations are analyzed with the programming and development of Ruby language.The resulting system can manage 3D cadastral objects and manipulate them with spatial operations to support spatial analysis.
文摘Medieval mosques in Algeria represent an important architectural heritage that deserves to be identifed,studied and preserved.Considering the period spanning the 7th to 15th centuries,this study investigated medieval mosques in Algeria,spatially and socially,to identify the architectural genotype and to establish whether such mosques present the same topological model that governs their spatial properties.This study adopted a new approach to spatial analysis of mosques that could be applied to improve understanding of other religious buildings.Space syntax as an architectural analysis tool can be used as a qualitative method for drawing justifed graphs and comparing them visually and quantitatively,calculating syntactic measures and integrating visibility graph analysis to identify spatial types,reveal architectural genotypes and explain social logic.The fndings demonstrate how space syntax with topological analysis and syntactic measures could be used to provide new understanding for architects,students and all those interested in heritage,architecture and design,by uncovering hidden structures and revealing the social logic embodied in the spatial confgurations of mosques.
基金supported by the National Natural Science Foundation of China(No.61121003)
文摘Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.