We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored at...We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.展开更多
This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military...This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military applications. The scattering problems are studied for the two-dimensional Helmholtz equation corresponding to the transverse magnetic or electric polarization, and the three-dimensional time-harmonic and time-domain Maxwell equations. Since these problems are imposed in open domains, a key step of the analysis is to develop transparent boundary conditions and reformulate them equivalently into boundary value problems in bounded domains. The well-posedness of weak solutions are shown for the associated variational problems by using either the Lax-Milgram theorem or the Fredholm alternative.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921603)the National Natural Science Foundation of China(Grant Nos.11374126,11347137,11404336,and 11204103)+1 种基金the China Postdoctoral Science Foundation(Grant No.2013T60317)the National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.
文摘This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military applications. The scattering problems are studied for the two-dimensional Helmholtz equation corresponding to the transverse magnetic or electric polarization, and the three-dimensional time-harmonic and time-domain Maxwell equations. Since these problems are imposed in open domains, a key step of the analysis is to develop transparent boundary conditions and reformulate them equivalently into boundary value problems in bounded domains. The well-posedness of weak solutions are shown for the associated variational problems by using either the Lax-Milgram theorem or the Fredholm alternative.