Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility ...Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility in managing pain.There-fore,the introduction of alternative,non-invasive,safe,and effective methods should be considered in treating patients with trigeminal neuralgia unresponsive to conventional treatment.展开更多
BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimu...BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimulation(tDCS)on SPL pain in a patient with cervical cord injury.CASE SUMMARY The subject was a 57-year-old man who was diagnosed with complete spinal cord injury(C6/C5,motor level;C5/C5,sensory level;AIS-A)approximately three months ago.After a period of 2 wk,we administered anodal tDCS over the motor cortex for 15 minutes at an intensity of 1.5 mA.Following that treatment,the patient experienced a decrease of SPL pain intensity and frequency,which lasted for 1 week after the end of treatment.CONCLUSION Targeting the motor cortex through neuromodulation appears to be a promising option for the management of SPL pain.展开更多
Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disord...Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.展开更多
BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM...BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.展开更多
Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS...Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS has evidence of effectiveness in treating symptoms of depression. Purpose/Aim: This post marketing study evaluated the effect of Flow on depression for primary care general practice patients with depression symptoms. Methods: Open-label patient cohort design with no control group. Inclusion criteria were aged 18 years or over and reporting depression symptoms. Participants self-administered five 30 minute tDCS sessions per week for the first three weeks, and then 3 sessions per week following this. Three, six and ten week assessment with participant self-report measure: Montgomery- Åsberg Depression Rating Scale (MADRS-S). Results: MADRS-S remission rates were between 29% - 30% at three weeks, 33% - 34% at six-weeks and 50% at 10-weeks treatment. There was a significant improvement in MADRS-S with large effect sizes at all time points. Conclusions: Flow tDCS can be delivered through a primary healthcare general practice service and patients will choose to use. Flow tDCS provides an effective depression treatment in addition and as an alternative to antidepressants and psychotherapy. tDCS has evidence as an effective depression treatment, and the widespread availability of tDCS in primary care general practice should be considered.展开更多
Background: Transcranial direct current stimulation (tDCS) has research evidence that it can reduce symptoms of depression. Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a...Background: Transcranial direct current stimulation (tDCS) has research evidence that it can reduce symptoms of depression. Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application that delivers wellbeing behaviour therapy training. Purpose/aim: The purpose of this study was to investigate if Flow can be introduced to a Crisis Resolution & Home Treatment (CRT) service and the impact of Flow in treating depression. The study addresses the questions: 1) “what are the depression reliable improvement and remission rates?” and 2) “can Flow significantly reduce depressive symptoms and improve real world functioning (every-day, social and occupational functioning) and health-related quality of life?”. Methods: An open-label patient cohort design with no control group. Pre-intervention and 6-week follow-up intervention assessments using the participant self-report measures: Patient Health Questionnaire (PHQ-9), Work and Social Adjustment Scale (WSAS), and EuroQol five-dimension (EQ-5D-5L). Participants were 49 CRT patients, 19 males and 30 females, with an age range of 20 to 66 years, and average age of 42 years. Results: PHQ-9 reliable improvement and remission rates were 57.1% and 14.3%. PHQ-9 scores significantly improved, from 23.1 (SD 3.44) to 14.8 (SD 6.82) at 6 weeks, with a large effect size. PHQ-9 suicide/self-harm related question significantly improved from 2.51 (SD 0.77) to 1.08 (SD 1.17), with a large effect size. WSAS scores significantly improved, from 33.6 (SD 5.22) to 21.9 (SD 10.82) at 6 weeks, with a large effect size. EQ-5D-5L results showed significant improvements in the health index score, global assessment of health EQ-VAS from 34.2 (22.26) to 51.6 (24.95), and three EQ-5D-5L dimensions (“self-care”, “usual activity”, and “anxiety/depression”). Conclusion: A CRT service effectively integrated Flow tDCS treatment. Flow was beneficial in terms of improving functioning and quality of life and reducing depression symptoms and thoughts of suicide/self-harm. Flow FL100 tDCS and wellbeing behaviour therapy training could be offered through all CRT services to treat depression, reduce thoughts of suicide/self-harm, enable better functioning, and improve quality of life.展开更多
Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of li...Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.展开更多
Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallu...Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination(AVH).This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials(RCTs).The databases of PsycINFO(2000–2019),PubMed(2000–2019),EMBASE(2000–2019),CINAHL(2000–2019),Web of Science(2000–2019),and Scopus(2000–2019)were systematically searched.The clinical trials with RCT design were selected for final analysis.A total of nine RCTs were eligible and included in the review.Nine RCTs were included in the final analysis.Among them,six RCTs reported a significant reduction of AVH after repeated sessions of tDCS,whereas three RCTs did not show any advantage of active tDCS over sham tDCS.The current studies showed an overall decrease of approximately 28%of AVH after active tDCS and 10%after sham tDCS.The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions.In this regard,cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs.The most effective tDCS protocol on AVHs was twice-daily sessions(2 mA,20-minute duration)over 5 consecutive days(10 sessions)with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area.Some patient-specific and diseasespecific factors such as young age,nonsmoking status,and higher frequencies of AVHs seemed to be the predictors of treatment response.Taken together,the results of tDCS as an alternative treatment option for AVH show controversy among current literatures,since not all studies were positive.However,the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH.Further RCTs,with larger sample sizes,should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.展开更多
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments...Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.展开更多
Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed imm...Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.展开更多
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers ...The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.展开更多
We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cor...We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.展开更多
Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for u...Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimu- lator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3) of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of mod- erate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.展开更多
This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive task...This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive tasks. Thirty healthy participants with no neurological disorders were recruited to participate in this study. Participants were randomly allocated into active or control condition. For the active condition, t DCS intensity was 2 m A with stimulation applied for 15 minutes to the right hemisphere(t DCS condition). For the sham control, electrodes were placed in the same position, but the stimulator was turned off after 30 seconds(sham condition). The tapping and tracking task tests were performed before and after for both conditions. Univariate analysis revealed significant difference only in the tracking task. For direct comparison of both tasks within each group, the tracking task had significantly higher Z score than the tapping task in the t DCS group(P 〈 0.05). Thus, our study indicates that stimulation of the right hemisphere using t DCS can effectively improve visuomotor(tracking) task over simple repetitive(tapping) task.展开更多
Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aime...Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.展开更多
Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persi...Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persistent back pain following spinal surgery, often leads to disability and increased healthcare utilization. Methods: This randomized, controlled, blind clinical trial aimed to investigate the efficacy of Transcranial Direct Current Stimulation (tDCS) in managing pain from post-laminectomy syndrome in patients. Twenty-four participants were assigned to three groups: sham stimulation, active stimulation over primary motor cortex (M1), or stimulation over dorsolateral prefrontal cortex (DLPFC). Stimulation was administered for five consecutive days, 20 minutes per session, using a current of 1.5 mA through 25 cm<sup>2</sup> electrodes. Pain intensity was assessed using Visual Analog Scale (VAS) before, during, and after intervention. Results: An ANOVA model demonstrates significant reduction in pain intensity compared to baseline in VAS, (F(7, 285) = 12.292;p 0.001;Power = 1.000;η2p = 0.534), in tDCS applied to M1, after five days of intervention. After stimulation, a significant improvement was observed in WHOQoL-Bref Quality of life item 1 (p = 0.04), considering statistical significant difference p 0.05. Correlation between the variables: quality of life, depression, anxiety and pain also demonstrates reduction in depression and anxiety according to Beck’s Depression and Anxiety Inventories (BDI and BAI), p 0.05. This effect was not observed in DLPFC stimulation group. Patients who believed they received active stimulation, in sham group, demonstrated potential for effective blinding. Conclusion: The tDCS applied to primary motor cortex effectively improved pain management and psychiatry symptoms in post-laminectomy syndrome patients. The technique’s low cost, ease of use, and high tolerability make it a promising adjuvant therapy for chronic pain conditions like post-laminectomy syndrome.展开更多
Introduction: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, technique for brain stimulation. Anodal stimulation causes neuronal depolarisation and long-term potentiation, while cathodal stimulation...Introduction: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, technique for brain stimulation. Anodal stimulation causes neuronal depolarisation and long-term potentiation, while cathodal stimulation causes hyperpolarisation and long-term depression. Stressors are associated with an increase in sympathetic cardiac control, a decrease in parasympathetic control, or both. Associated with these reactions is a frequently reported increase in Low Frequency (LF) Heart Rate Variability (HRV), a decrease in High Frequency (HF) power, and/or an increase in the LF/HF ratio. Objectives and aims: The present work aims to explore the tDCS potential in the modulation of the Autonomic Nervous System (ANS), through indirect stimulation of Anterior Cingulate Cortex (ACC). Methods: Two subjects, a 39 year old female and a 49 year old male, gave informed consent. Saline soaked synthetic sponges involving two, thick, metalic (stainless steel) rectangles, with an area of 25 cm2 each have been used as electrodes, connected to Iomed Phoresor II Auto device. It has been delivered a 2 mA current, for 20 minutes, over the left Dorsolateral Prefrontal Cortex (DLPFC) (Anode). Spectrum analysis (cStress software) of HRV has been performed before and after tDCS administration. Results: The female/male subject results of LF power, HF power and LF/HF ratio, before tDCS administration, were, respectively: 50.1 nu/60 nu, 46.1 nu/21.7 nu and 1.087/2.771;and, after tDCS administration, respectively: 33.5 nu/52.7 nu, 47.6 nu/ 22.8 nu and 0.704/2.312. Conclusions: tDCS over the left DLPFC (left ACC) increased parasympathetic activity and decreased sympathetic activity, suggesting the importance of tDCS in the management of stress-related disorders.展开更多
Transcranial direct current stimulation(tDCS)is a promising method for altering cortical excitability with clinical implications.It has been increasingly used in neurodevelopmental disorders,especially attention-defic...Transcranial direct current stimulation(tDCS)is a promising method for altering cortical excitability with clinical implications.It has been increasingly used in neurodevelopmental disorders,especially attention-deficit hyperactivity disorder(ADHD),but its efficacy(based on effect size calculations),safety,and stimulation parameters have not been systematically examined.In this systematic review,we aimed to(1)explore the effectiveness of tDCS on the clinical symptoms and neuropsychological deficits of ADHD patients,(2)evaluate the safety of tDCS application,especially in children with ADHD,(3)model the electrical field intensity in the target regions based on the commonly-applied and effective versus less-effective protocols,and(4)discuss and propose advanced tDCS parameters.Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach,a literature search identified 14 empirical experiments investigating tDCS effects in ADHD.Partial improving effects of tDCS on cognitive deficits(response inhibition,working memory,attention,and cognitive flexibility)or clinical symptoms(e.g.,impulsivity and inattention)are reported in10 studies.No serious adverse effects are reported in 747 sessions of tDCS.The left and right dorsolateral prefrontal cortex are the regions most often targeted,and anodal tDCS the protocol most often applied.An intensity of 2 mA induced stronger electrical fields than 1 mA in adults with ADHD and was associated with significant behavioral changes.In ADHD children,however,the electrical field induced by 1 mA,which is likely larger than the electrical field induced by 1 mA in adults due to the smaller head size of children,was sufficient to result in significant behavioral change.Overall,tDCS seems to be a promising method for improving ADHD deficits.However,the clinical utility of tDCS in ADHD cannot yet be concluded and requires further systematic investigation in larger sample sizes.Cortical regions involved in ADHD pathophysiology,stimulation parameters(e.g.intensity,duration,polarity,and electrode size),and types of symptom/deficit are potential determinants of tDCS efficacy in ADHD.Developmental aspects of tDCS in childhood ADHD should be considered as well.展开更多
Background:Parkinson’s Disease(PD)with mild cognitive impairment(MCI)(PD-MCI)represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia.Although ...Background:Parkinson’s Disease(PD)with mild cognitive impairment(MCI)(PD-MCI)represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia.Although transcranial direct current stimulation(tDCS)has been demonstrated to improve motor and non-motor symptoms in PD,to date,no study has investigated the effects of tDCS on Theory of Mind(ToM),i.e.,the ability to understand and predict other people’s behaviours,in PD-MCI.Methods:In this randomized,double-blind,sham-controlled study,we applied active tDCS over the medial frontal cortex(MFC)to modulate ToM performance in twenty patients with PD-MCI.Twenty matched healthy controls(HC)were also enrolled and were asked to perform the ToM task without receiving tDCS.Results:In the patients with PD-MCI,i)ToM performance was worse than that in the HC,ii)ToM abilities were poorer in those with fronto-executive difficulties,and iii)tDCS over the MFC led to significant shortening of latency for ToM tasks.Conclusions:We show for the first time that active tDCS over the MFC enhances ToM in patients with PD-MCI,and suggest that non-invasive brain stimulation could be used to ameliorate ToM deficits observed in these patients.展开更多
Objective:Emerging evidence shows the effectiveness of speech and language therapy(SLT);however,precise therapeutic parameters remain unclear.Evidence for the use of adjunctive transcranial direct current stimulation(...Objective:Emerging evidence shows the effectiveness of speech and language therapy(SLT);however,precise therapeutic parameters remain unclear.Evidence for the use of adjunctive transcranial direct current stimulation(t DCS)to treat post-stroke aphasia(PSA)is promising;however,the utility of combining t DCS and electroacupuncture(EA)has not yet been analyzed.This study assessed the therapeutic consequences of EA and t DCS coupled with SLT in subacute PSA patients who were also undergoing hyperbaric oxygen therapy(HBOT).Methods:A retrospective analysis was conducted on subacute(<6 months)PSA patients who were divided into three groups:patients who received EA plus t DCS(acupuncture group),patients who underwent t DCS(t DCS group),and patients who experienced conventional therapy(HBOT+SLT).All subjects underwent 21 days of treatment and also received conventional treatment.The aphasia battery of Chinese(ABC)was used to score pre-and post-intervention status.Results:The analysis comprised 238 patients.Cerebral infarction was the most frequent stroke type(137[57.6%]),while motor(66[27.7%])and global aphasia(60[25.2%])were the most common types of aphasia.After 21 days of intervention,the ABC scores of all patients were improved.The acupuncture group had the highest ABC scores,but only repetition,naming,and spontaneous speech were statistically improved(P<0.01).Post-hoc tests revealed significant improvement in word retrieval in the acupuncture and t DCS groups(P<0.01,P=0.037),while the acupuncture group had additional significant improvement in spontaneous conversation(P<0.01).Conclusion:Combining acupuncture and t DCS as an adjuvant therapy for subacute PSA led to significant spontaneous speech and word retrieval improvements.Future prospective,multi-ethnic,multi-center trials are warranted.展开更多
文摘Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility in managing pain.There-fore,the introduction of alternative,non-invasive,safe,and effective methods should be considered in treating patients with trigeminal neuralgia unresponsive to conventional treatment.
文摘BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimulation(tDCS)on SPL pain in a patient with cervical cord injury.CASE SUMMARY The subject was a 57-year-old man who was diagnosed with complete spinal cord injury(C6/C5,motor level;C5/C5,sensory level;AIS-A)approximately three months ago.After a period of 2 wk,we administered anodal tDCS over the motor cortex for 15 minutes at an intensity of 1.5 mA.Following that treatment,the patient experienced a decrease of SPL pain intensity and frequency,which lasted for 1 week after the end of treatment.CONCLUSION Targeting the motor cortex through neuromodulation appears to be a promising option for the management of SPL pain.
文摘Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.
文摘BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.
文摘Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS has evidence of effectiveness in treating symptoms of depression. Purpose/Aim: This post marketing study evaluated the effect of Flow on depression for primary care general practice patients with depression symptoms. Methods: Open-label patient cohort design with no control group. Inclusion criteria were aged 18 years or over and reporting depression symptoms. Participants self-administered five 30 minute tDCS sessions per week for the first three weeks, and then 3 sessions per week following this. Three, six and ten week assessment with participant self-report measure: Montgomery- Åsberg Depression Rating Scale (MADRS-S). Results: MADRS-S remission rates were between 29% - 30% at three weeks, 33% - 34% at six-weeks and 50% at 10-weeks treatment. There was a significant improvement in MADRS-S with large effect sizes at all time points. Conclusions: Flow tDCS can be delivered through a primary healthcare general practice service and patients will choose to use. Flow tDCS provides an effective depression treatment in addition and as an alternative to antidepressants and psychotherapy. tDCS has evidence as an effective depression treatment, and the widespread availability of tDCS in primary care general practice should be considered.
文摘Background: Transcranial direct current stimulation (tDCS) has research evidence that it can reduce symptoms of depression. Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application that delivers wellbeing behaviour therapy training. Purpose/aim: The purpose of this study was to investigate if Flow can be introduced to a Crisis Resolution & Home Treatment (CRT) service and the impact of Flow in treating depression. The study addresses the questions: 1) “what are the depression reliable improvement and remission rates?” and 2) “can Flow significantly reduce depressive symptoms and improve real world functioning (every-day, social and occupational functioning) and health-related quality of life?”. Methods: An open-label patient cohort design with no control group. Pre-intervention and 6-week follow-up intervention assessments using the participant self-report measures: Patient Health Questionnaire (PHQ-9), Work and Social Adjustment Scale (WSAS), and EuroQol five-dimension (EQ-5D-5L). Participants were 49 CRT patients, 19 males and 30 females, with an age range of 20 to 66 years, and average age of 42 years. Results: PHQ-9 reliable improvement and remission rates were 57.1% and 14.3%. PHQ-9 scores significantly improved, from 23.1 (SD 3.44) to 14.8 (SD 6.82) at 6 weeks, with a large effect size. PHQ-9 suicide/self-harm related question significantly improved from 2.51 (SD 0.77) to 1.08 (SD 1.17), with a large effect size. WSAS scores significantly improved, from 33.6 (SD 5.22) to 21.9 (SD 10.82) at 6 weeks, with a large effect size. EQ-5D-5L results showed significant improvements in the health index score, global assessment of health EQ-VAS from 34.2 (22.26) to 51.6 (24.95), and three EQ-5D-5L dimensions (“self-care”, “usual activity”, and “anxiety/depression”). Conclusion: A CRT service effectively integrated Flow tDCS treatment. Flow was beneficial in terms of improving functioning and quality of life and reducing depression symptoms and thoughts of suicide/self-harm. Flow FL100 tDCS and wellbeing behaviour therapy training could be offered through all CRT services to treat depression, reduce thoughts of suicide/self-harm, enable better functioning, and improve quality of life.
文摘Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.
文摘Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination(AVH).This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials(RCTs).The databases of PsycINFO(2000–2019),PubMed(2000–2019),EMBASE(2000–2019),CINAHL(2000–2019),Web of Science(2000–2019),and Scopus(2000–2019)were systematically searched.The clinical trials with RCT design were selected for final analysis.A total of nine RCTs were eligible and included in the review.Nine RCTs were included in the final analysis.Among them,six RCTs reported a significant reduction of AVH after repeated sessions of tDCS,whereas three RCTs did not show any advantage of active tDCS over sham tDCS.The current studies showed an overall decrease of approximately 28%of AVH after active tDCS and 10%after sham tDCS.The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions.In this regard,cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs.The most effective tDCS protocol on AVHs was twice-daily sessions(2 mA,20-minute duration)over 5 consecutive days(10 sessions)with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area.Some patient-specific and diseasespecific factors such as young age,nonsmoking status,and higher frequencies of AVHs seemed to be the predictors of treatment response.Taken together,the results of tDCS as an alternative treatment option for AVH show controversy among current literatures,since not all studies were positive.However,the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH.Further RCTs,with larger sample sizes,should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea of Republic, No. 2012R1A1B4003477
文摘Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.
基金supported by the National Natural Science Foundation of China,No.31971287(to XYW)the Advanced Interdisciplinary Studies Foundation of School of Basic Medical Science,Army Medical University of China,No.2018JCQY07(to HZW).
文摘Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.
文摘The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.
基金supported by a National Research Foundation of Korea Grant funded by the Korean Government,No.2009-0064682
文摘We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning,No.2012R1A1B4003477
文摘Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimu- lator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3) of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of mod- erate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.
文摘This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive tasks. Thirty healthy participants with no neurological disorders were recruited to participate in this study. Participants were randomly allocated into active or control condition. For the active condition, t DCS intensity was 2 m A with stimulation applied for 15 minutes to the right hemisphere(t DCS condition). For the sham control, electrodes were placed in the same position, but the stimulator was turned off after 30 seconds(sham condition). The tapping and tracking task tests were performed before and after for both conditions. Univariate analysis revealed significant difference only in the tracking task. For direct comparison of both tasks within each group, the tracking task had significantly higher Z score than the tapping task in the t DCS group(P 〈 0.05). Thus, our study indicates that stimulation of the right hemisphere using t DCS can effectively improve visuomotor(tracking) task over simple repetitive(tapping) task.
文摘Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.
文摘Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persistent back pain following spinal surgery, often leads to disability and increased healthcare utilization. Methods: This randomized, controlled, blind clinical trial aimed to investigate the efficacy of Transcranial Direct Current Stimulation (tDCS) in managing pain from post-laminectomy syndrome in patients. Twenty-four participants were assigned to three groups: sham stimulation, active stimulation over primary motor cortex (M1), or stimulation over dorsolateral prefrontal cortex (DLPFC). Stimulation was administered for five consecutive days, 20 minutes per session, using a current of 1.5 mA through 25 cm<sup>2</sup> electrodes. Pain intensity was assessed using Visual Analog Scale (VAS) before, during, and after intervention. Results: An ANOVA model demonstrates significant reduction in pain intensity compared to baseline in VAS, (F(7, 285) = 12.292;p 0.001;Power = 1.000;η2p = 0.534), in tDCS applied to M1, after five days of intervention. After stimulation, a significant improvement was observed in WHOQoL-Bref Quality of life item 1 (p = 0.04), considering statistical significant difference p 0.05. Correlation between the variables: quality of life, depression, anxiety and pain also demonstrates reduction in depression and anxiety according to Beck’s Depression and Anxiety Inventories (BDI and BAI), p 0.05. This effect was not observed in DLPFC stimulation group. Patients who believed they received active stimulation, in sham group, demonstrated potential for effective blinding. Conclusion: The tDCS applied to primary motor cortex effectively improved pain management and psychiatry symptoms in post-laminectomy syndrome patients. The technique’s low cost, ease of use, and high tolerability make it a promising adjuvant therapy for chronic pain conditions like post-laminectomy syndrome.
文摘Introduction: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, technique for brain stimulation. Anodal stimulation causes neuronal depolarisation and long-term potentiation, while cathodal stimulation causes hyperpolarisation and long-term depression. Stressors are associated with an increase in sympathetic cardiac control, a decrease in parasympathetic control, or both. Associated with these reactions is a frequently reported increase in Low Frequency (LF) Heart Rate Variability (HRV), a decrease in High Frequency (HF) power, and/or an increase in the LF/HF ratio. Objectives and aims: The present work aims to explore the tDCS potential in the modulation of the Autonomic Nervous System (ANS), through indirect stimulation of Anterior Cingulate Cortex (ACC). Methods: Two subjects, a 39 year old female and a 49 year old male, gave informed consent. Saline soaked synthetic sponges involving two, thick, metalic (stainless steel) rectangles, with an area of 25 cm2 each have been used as electrodes, connected to Iomed Phoresor II Auto device. It has been delivered a 2 mA current, for 20 minutes, over the left Dorsolateral Prefrontal Cortex (DLPFC) (Anode). Spectrum analysis (cStress software) of HRV has been performed before and after tDCS administration. Results: The female/male subject results of LF power, HF power and LF/HF ratio, before tDCS administration, were, respectively: 50.1 nu/60 nu, 46.1 nu/21.7 nu and 1.087/2.771;and, after tDCS administration, respectively: 33.5 nu/52.7 nu, 47.6 nu/ 22.8 nu and 0.704/2.312. Conclusions: tDCS over the left DLPFC (left ACC) increased parasympathetic activity and decreased sympathetic activity, suggesting the importance of tDCS in the management of stress-related disorders.
基金This review was supported by the Department of Psychology and Neurosciences,Leibniz-Institut fiir Arbeitsforschung Ministry of Science,Research and Technology,Deputy of Scholarship and Students Affairs,Iran(95000171)the German Ministry of Research and Education(German Center for Brain Stimulation grant number 01EE1403C).
文摘Transcranial direct current stimulation(tDCS)is a promising method for altering cortical excitability with clinical implications.It has been increasingly used in neurodevelopmental disorders,especially attention-deficit hyperactivity disorder(ADHD),but its efficacy(based on effect size calculations),safety,and stimulation parameters have not been systematically examined.In this systematic review,we aimed to(1)explore the effectiveness of tDCS on the clinical symptoms and neuropsychological deficits of ADHD patients,(2)evaluate the safety of tDCS application,especially in children with ADHD,(3)model the electrical field intensity in the target regions based on the commonly-applied and effective versus less-effective protocols,and(4)discuss and propose advanced tDCS parameters.Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach,a literature search identified 14 empirical experiments investigating tDCS effects in ADHD.Partial improving effects of tDCS on cognitive deficits(response inhibition,working memory,attention,and cognitive flexibility)or clinical symptoms(e.g.,impulsivity and inattention)are reported in10 studies.No serious adverse effects are reported in 747 sessions of tDCS.The left and right dorsolateral prefrontal cortex are the regions most often targeted,and anodal tDCS the protocol most often applied.An intensity of 2 mA induced stronger electrical fields than 1 mA in adults with ADHD and was associated with significant behavioral changes.In ADHD children,however,the electrical field induced by 1 mA,which is likely larger than the electrical field induced by 1 mA in adults due to the smaller head size of children,was sufficient to result in significant behavioral change.Overall,tDCS seems to be a promising method for improving ADHD deficits.However,the clinical utility of tDCS in ADHD cannot yet be concluded and requires further systematic investigation in larger sample sizes.Cortical regions involved in ADHD pathophysiology,stimulation parameters(e.g.intensity,duration,polarity,and electrode size),and types of symptom/deficit are potential determinants of tDCS efficacy in ADHD.Developmental aspects of tDCS in childhood ADHD should be considered as well.
基金Mauro Adenzato was supported by the University of Turin(Ricerca scientifica finanziata dall’Università“Cognizione sociale e attaccamento in popolazioni cliniche e non cliniche”)Ivan Enrici was supported by University of Turin grants(Ricerca scientifica finanziata dall’Università“Linea Generale”and“Linea Giovani”).
文摘Background:Parkinson’s Disease(PD)with mild cognitive impairment(MCI)(PD-MCI)represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia.Although transcranial direct current stimulation(tDCS)has been demonstrated to improve motor and non-motor symptoms in PD,to date,no study has investigated the effects of tDCS on Theory of Mind(ToM),i.e.,the ability to understand and predict other people’s behaviours,in PD-MCI.Methods:In this randomized,double-blind,sham-controlled study,we applied active tDCS over the medial frontal cortex(MFC)to modulate ToM performance in twenty patients with PD-MCI.Twenty matched healthy controls(HC)were also enrolled and were asked to perform the ToM task without receiving tDCS.Results:In the patients with PD-MCI,i)ToM performance was worse than that in the HC,ii)ToM abilities were poorer in those with fronto-executive difficulties,and iii)tDCS over the MFC led to significant shortening of latency for ToM tasks.Conclusions:We show for the first time that active tDCS over the MFC enhances ToM in patients with PD-MCI,and suggest that non-invasive brain stimulation could be used to ameliorate ToM deficits observed in these patients.
文摘Objective:Emerging evidence shows the effectiveness of speech and language therapy(SLT);however,precise therapeutic parameters remain unclear.Evidence for the use of adjunctive transcranial direct current stimulation(t DCS)to treat post-stroke aphasia(PSA)is promising;however,the utility of combining t DCS and electroacupuncture(EA)has not yet been analyzed.This study assessed the therapeutic consequences of EA and t DCS coupled with SLT in subacute PSA patients who were also undergoing hyperbaric oxygen therapy(HBOT).Methods:A retrospective analysis was conducted on subacute(<6 months)PSA patients who were divided into three groups:patients who received EA plus t DCS(acupuncture group),patients who underwent t DCS(t DCS group),and patients who experienced conventional therapy(HBOT+SLT).All subjects underwent 21 days of treatment and also received conventional treatment.The aphasia battery of Chinese(ABC)was used to score pre-and post-intervention status.Results:The analysis comprised 238 patients.Cerebral infarction was the most frequent stroke type(137[57.6%]),while motor(66[27.7%])and global aphasia(60[25.2%])were the most common types of aphasia.After 21 days of intervention,the ABC scores of all patients were improved.The acupuncture group had the highest ABC scores,but only repetition,naming,and spontaneous speech were statistically improved(P<0.01).Post-hoc tests revealed significant improvement in word retrieval in the acupuncture and t DCS groups(P<0.01,P=0.037),while the acupuncture group had additional significant improvement in spontaneous conversation(P<0.01).Conclusion:Combining acupuncture and t DCS as an adjuvant therapy for subacute PSA led to significant spontaneous speech and word retrieval improvements.Future prospective,multi-ethnic,multi-center trials are warranted.