First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the re...First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope(CLSM).The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000℃.And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region(above 1000℃)and 693.2 kJ/mol in the low temperature region(below 1000℃),respectively.Then,the kinetics model of austenite isothermal growth was established,which can predict the austenite grain size during isothermal hold very well.Besides,high density of second phase particles with small size was found during the isothermal hold at the low temperature region,leading to the refinement of austenite grain.After isothermal hold at different temperature for 1800 s,the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process.And growth rates of bainite plates with different nucleation positions and different prior austenite grain size(PAGS)were calculated.It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.展开更多
China has experienced rapid rural transformation in the past four decades.Accompanying the rapid transformation is a significant rise in rural household income and a substantial fall in rural poverty.This paper examin...China has experienced rapid rural transformation in the past four decades.Accompanying the rapid transformation is a significant rise in rural household income and a substantial fall in rural poverty.This paper examines the evolutions of and the relationships between rural transformation(high-value agriculture and rural non-farm employment)and its outcomes(per capita rural income and rural poverty incidence)using provincial-level data.The results show that 31 provinces/autonomous regions/municipalities have undergone significant rural transformation,but the level and speed of rural transformation differed considerably.Moreover,an increased level of rural transformation is often associated with higher per capita rural income and reduced rural poverty incidence.Notably,a category of provincial rural transformation based on high-value agriculture and rural non-farm employment is also analyzed.We further discuss the likely impacts of institutions,policies,and investments(IPIs)on rural transformation and conclude with policy implications.展开更多
Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an importa...Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to...Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.展开更多
基金supported from the National Natural Science Foundation of China(No.52130408)the Hunan Scientific Technology Project,China(Nos.2019RS3007,2020WK2003)the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope(CLSM).The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000℃.And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region(above 1000℃)and 693.2 kJ/mol in the low temperature region(below 1000℃),respectively.Then,the kinetics model of austenite isothermal growth was established,which can predict the austenite grain size during isothermal hold very well.Besides,high density of second phase particles with small size was found during the isothermal hold at the low temperature region,leading to the refinement of austenite grain.After isothermal hold at different temperature for 1800 s,the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process.And growth rates of bainite plates with different nucleation positions and different prior austenite grain size(PAGS)were calculated.It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.
基金The authors acknowledge the financial support from the Australian Centre for International Agricultural Research(ADP/2017/024)the National Natural Science Foundation of China(71934003)+1 种基金the National Social Science Fundof China(19ZDA002 and 22CJL003)the International Fund for Agricultural Development(2000000866).
文摘China has experienced rapid rural transformation in the past four decades.Accompanying the rapid transformation is a significant rise in rural household income and a substantial fall in rural poverty.This paper examines the evolutions of and the relationships between rural transformation(high-value agriculture and rural non-farm employment)and its outcomes(per capita rural income and rural poverty incidence)using provincial-level data.The results show that 31 provinces/autonomous regions/municipalities have undergone significant rural transformation,but the level and speed of rural transformation differed considerably.Moreover,an increased level of rural transformation is often associated with higher per capita rural income and reduced rural poverty incidence.Notably,a category of provincial rural transformation based on high-value agriculture and rural non-farm employment is also analyzed.We further discuss the likely impacts of institutions,policies,and investments(IPIs)on rural transformation and conclude with policy implications.
基金supported by the National Key Research and Development Projects,Nos.2022 YFC3602400,2022 YFC3602401(to JX)the Project Program of National Clinical Research Center for Geriatric Disorders(Xiangya Hospital),No.2020LNJJ16(to JX)the National Natural Science Foundation of China,No.82271369(to JX)。
文摘Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金supported by the National Natural Science Foundation of China,Nos.31971277 and 31950410551(both to DY)。
文摘Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.