期刊文献+
共找到1,029,531篇文章
< 1 2 250 >
每页显示 20 50 100
融合残差块与Swin-Transformer机制的刀具磨损监测方法
1
作者 李泽稷 周学良 孙培禄 《现代制造工程》 CSCD 北大核心 2024年第8期126-135,共10页
为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行... 为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行平移融合;最后,通过回归层实现刀具磨损值监测。试验结果表明,融合一层残差块与一层stage机制的Swin-Transformer模型可以有效融合刀具磨损状态监测信号的全局信息,相比其他Swin-Transformer模型,不仅模型结构简单,而且具有更高的监测精度,利用PHM2010数据集验证的MSE、MAE和R2分别达到4.471 9、1.467 5和0.995 8。 展开更多
关键词 刀具 磨损监测 残差卷积神经网络 Swin-transformer模型
下载PDF
融合多种时空自注意力机制的Transformer交通流预测模型 被引量:1
2
作者 曹威 王兴 +2 位作者 邹复民 金彪 王小军 《计算机系统应用》 2024年第4期82-92,共11页
交通流预测是智能交通系统中实现城市交通优化的一种重要方法,准确的交通流量预测对交通管理和诱导具有重要意义.然而,因交通流本身存在高度时空依赖性而表现出复杂的非线性特征,现有的方法主要考虑路网中节点的局部时空特征,忽略了路... 交通流预测是智能交通系统中实现城市交通优化的一种重要方法,准确的交通流量预测对交通管理和诱导具有重要意义.然而,因交通流本身存在高度时空依赖性而表现出复杂的非线性特征,现有的方法主要考虑路网中节点的局部时空特征,忽略了路网中所有节点的长期时空特征.为了充分挖掘交通流数据复杂的时空依赖,提出一种融合多种时空自注意力机制的Transformer交通流预测模型(MSTTF).该模型在嵌入层通过位置编码嵌入时间和空间信息,并在注意力机制层融合邻接空间自注意力机制,相似空间自注意力机制,时间自注意力机制,时间-空间自注意力机制等多种自注意力机制挖掘数据中潜在的时空依赖关系,最后在输出层进行预测.结果表明,MSTTF模型与传统时空Transformer相比,MAE平均降低了10.36%.特别地,相比于目前最先进的PDFormer模型,MAE平均降低了1.24%,能取得更好的预测效果. 展开更多
关键词 交通流预测 智能交通 时空依赖性 transformer 自注意力机制
下载PDF
基于探针稀疏注意力机制的门控Transformer模型
3
作者 赵婷婷 丁翘楚 +2 位作者 马冲 陈亚瑞 王嫄 《天津科技大学学报》 CAS 2024年第3期56-63,共8页
在强化学习中,智能体对状态序列进行编码,根据历史信息指导动作的选择,通常将其建模为递归型神经网络,但其存在梯度消失和梯度爆炸的问题,难以处理长序列。以自注意力机制为核心的Transformer是一种能够有效整合长时间范围内信息的机制... 在强化学习中,智能体对状态序列进行编码,根据历史信息指导动作的选择,通常将其建模为递归型神经网络,但其存在梯度消失和梯度爆炸的问题,难以处理长序列。以自注意力机制为核心的Transformer是一种能够有效整合长时间范围内信息的机制,将传统Transformer直接应用于强化学习中存在训练不稳定和计算复杂度高的问题。门控Transformer-XL(GTrXL)解决了Transformer在强化学习中训练不稳定的问题,但仍具有很高的计算复杂度。针对此问题,本研究提出了一种具有探针稀疏注意力机制的门控Transformer(PS-GTr),其在GTrXL中的恒等映射重排和门控机制的基础上引入了探针稀疏注意力机制,降低了时间复杂度和空间复杂度,进一步提高了训练效率。通过实验验证,PS-GTr在强化学习任务中的性能与GTrXL相当,而且训练时间更短,内存占用更少。 展开更多
关键词 深度强化学习 自注意力机制 探针稀疏注意力机制
下载PDF
嵌入混合注意力机制的Swin Transformer人脸表情识别 被引量:3
4
作者 王坤侠 余万成 胡玉霞 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期168-176,共9页
人脸表情识别是心理学领域的一个重要研究方向,可应用于交通、医疗、安全和刑事调查等领域。针对卷积神经网络(CNN)在提取人脸表情全局特征的局限性,提出了一种嵌入混合注意力机制的Swin Transformer人脸表情识别方法,以Swin Transforme... 人脸表情识别是心理学领域的一个重要研究方向,可应用于交通、医疗、安全和刑事调查等领域。针对卷积神经网络(CNN)在提取人脸表情全局特征的局限性,提出了一种嵌入混合注意力机制的Swin Transformer人脸表情识别方法,以Swin Transformer为主干网络,在模型Stage3的融合层(Patch Merging)中嵌入了混合注意力模块,该方法能够有效提取人脸面部表情的全局特征和局部特征。首先,层次化的Swin Transformer模型可有效获取深层全局特征信息。其次,嵌入的混合注意力模块结合了通道和空间注意力机制,在通道维度和空间维度上进行特征提取,从而让模型能够更好地提取局部位置的特征信息。同时,采用迁移学习方法对模型网络权重进行初始化,进而提高模型的精度和泛化能力。所提方法在FER2013、RAF-DB和JAFFE这3个公共数据集上分别达到了73.63%、87.01%和98.28%的识别准确率,取得了较好的识别效果。 展开更多
关键词 表情识别 transformer 注意力机制 迁移学习
下载PDF
基于RoBERTa和图增强Transformer的序列推荐方法 被引量:2
5
作者 王明虎 石智奎 +1 位作者 苏佳 张新生 《计算机工程》 CAS CSCD 北大核心 2024年第4期121-131,共11页
自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明... 自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明显劣势。为了更好地挖掘用户与商品之间的深层潜在特征,进一步提高推荐质量,提出一种基于Ro BERTa和图增强Transformer的序列推荐(RGT)模型。引入评论文本数据,首先利用预训练的Ro BERTa模型捕获评论文本中的字词语义特征,初步建模用户的个性化兴趣,然后根据用户与商品的历史交互信息,构建具有时序特性的商品关联图注意力机制网络模型,通过图增强Transformer的方法将图模型学习到的各个商品的特征表示以序列的形式输入Transformer编码层,最后将得到的输出向量与之前捕获的语义表征以及计算得到的商品关联图的全图表征输入全连接层,以捕获用户全局的兴趣偏好,实现用户对商品的预测评分。在3组真实亚马逊公开数据集上的实验结果表明,与Deep FM、Conv MF等经典文本推荐模型相比,RGT模型在均方根误差(RMSE)和平均绝对误差(MAE)2种指标上有显著提升,相较于最优对比模型最高分别提升4.7%和5.3%。 展开更多
关键词 推荐算法 评论文本 RoBERTa模型 图注意力机制 transformer机制
下载PDF
基于改进注意力机制Transformer网络的快消品销量预测方法
6
作者 王阳 何利力 郑军红 《智能计算机与应用》 2024年第1期175-179,共5页
销量预测能为企业生产计划、仓储运输提供决策支持,使企业能更好地适应市场需求。快消品销售量受众多因素的影响,具有季节性和周期性规律,传统的线性模型难以准确的预测,本文从长时序列预测的视角,运用深度学习理论,提出了一种基于订单... 销量预测能为企业生产计划、仓储运输提供决策支持,使企业能更好地适应市场需求。快消品销售量受众多因素的影响,具有季节性和周期性规律,传统的线性模型难以准确的预测,本文从长时序列预测的视角,运用深度学习理论,提出了一种基于订单时序和订单频率的改进自注意力机制模型(Sequence-Frequency Transformer,SFTransformer)。首先,基于快消品订单数据构建原始数据集,采用time2vec编码处理订单时序信息,并融合订单数据的时序和频率特征在基于时序的订单数据的不同订单频率分别对应不同的注意力头来关注订单数据的订单时序特征和频率特征;使用Transformer模型架构提取特征进行长时序列预测。在真实数据集上进行对比实验,SFTransformer模型在均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)3项指标上均取得了最佳性能,验证了本文所提方法的有效性。 展开更多
关键词 销量预测 长时序列预测 SFtransformer 改进自注意力机制
下载PDF
基于Transformer与改进记忆机制的用电量预测研究
7
作者 蔡岳 张津铭 +2 位作者 郭晶 徐玉华 孙知信 《信息技术》 2024年第6期67-74,79,共9页
近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变... 近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变种模型,但准确度相对较低。文中提出了一种基于改进记忆机制与Transformer的用电量预测模型,使用Transformer编码输入,提出了一种新型记忆机制来执行预测。实验表明该方法相较随机森林回归和LSTM及其变种模型,一周内平均误差分别下降9.05%与5.32%,模型收敛速度更快且具有较好的泛化性能。 展开更多
关键词 记忆网络 transformer 时序预测 机器学习 长短期记忆
下载PDF
基于粗糙注意力融合机制与Group Transformer的视网膜血管分割网络
8
作者 王海鹏 高自强 +3 位作者 董佳俊 胡军 陈奕帆 丁卫平 《南通大学学报(自然科学版)》 CAS 2024年第1期28-37,48,共11页
视网膜血管的形态学变化对早期眼科疾病的诊断具有重要意义,除眼科疾病外,糖尿病、心血管疾病等同样可以通过视网膜血管的形态判别疾病进展。然而,视网膜血管本身具有复杂的组织结构,且易受到光线等因素的影响,对其准确分割并不容易。... 视网膜血管的形态学变化对早期眼科疾病的诊断具有重要意义,除眼科疾病外,糖尿病、心血管疾病等同样可以通过视网膜血管的形态判别疾病进展。然而,视网膜血管本身具有复杂的组织结构,且易受到光线等因素的影响,对其准确分割并不容易。针对上述问题,提出了一种视网膜血管分割网络。该网络中首先设计了粗糙注意力融合模块(rough attention fusion module,RAFM),该模块基于粗糙集上下近似理论,利用全局最大池化与全局平均池化对注意力系数进行上下限描述,并串行融合通道注意力机制与空间注意力机制;然后,将粗糙注意力融合模块融入Group Transformer U network(GT U-Net),构建一种基于粗糙注意力融合机制与Group Transformer的视网膜血管分割网络;最后,基于公开DRIVE彩色眼底图像数据集进行对比实验,该网络结构在测试集上的准确率、F_(1)分数、AUC值分别达到了0.9631、0.8488和0.9812,与GT U-Net模型相比,F_(1)分数、AUC值分别提升了0.35%、0.21%;与其他当前主流的视网膜血管分割网络进行对比,具有一定优势。 展开更多
关键词 粗糙集 注意力机制 眼底视网膜血管 图像分割 transformer
下载PDF
基于退化四元数注意力机制的轻量化Transformer去雨网络
9
作者 熊贡鹤 陈飞龙 +1 位作者 孙成立 郭桥生 《计算机工程与应用》 CSCD 北大核心 2024年第19期250-258,共9页
现有主流图像去雨方法专注于提升去雨性能,而忽略了网络计算开销过大的问题。少数轻量化网络的研究只局限于修改网络结构来简化网络计算。针对上述问题,利用退化四元数可以获得更多图像先验信息的特性提出了一个基于退化四元数图像去雨... 现有主流图像去雨方法专注于提升去雨性能,而忽略了网络计算开销过大的问题。少数轻量化网络的研究只局限于修改网络结构来简化网络计算。针对上述问题,利用退化四元数可以获得更多图像先验信息的特性提出了一个基于退化四元数图像去雨网络。网络使用退化四元数Swin-Transformer块(reduced biquaternion Swin-Transformer block,RQSTB)作为主要特征提取模块。其中设计了使用基于退化四元数多头注意力机制的Transformer块提取全局特征信息,同时穿插使用退化四元数多尺度卷积模块提取局部多尺度特征信息,用以弥补Transformer缺乏卷积神经网络自带的一些归纳偏置的缺陷。经实验证明,该方法在网络参数和计算复杂度方面都优于很多现有的图像去雨方法,并且在去雨性能方面也达到了先进的水平,无论是从定量还是定性的指标来看,都展现了显著的效果。 展开更多
关键词 图像去雨 退化四元数网络 transformer 轻量化
下载PDF
基于Swin Transformer和注意力机制的红外无人机检测算法
10
作者 王思宇 卢瑞涛 +4 位作者 黄攀 杨小冈 夏文新 李清格 张震宇 《航空科学技术》 2024年第2期39-46,共8页
红外无人机目标检测在军民领域的应用前景广阔。由于无人机目标尺度较小,空中环境复杂多变,目前普遍存在检测率低和误报率高的现象。针对复杂场景下红外无人机目标检测不良等问题,本文提出ST-YOLOA目标检测模型。首先,使用Swin Transfor... 红外无人机目标检测在军民领域的应用前景广阔。由于无人机目标尺度较小,空中环境复杂多变,目前普遍存在检测率低和误报率高的现象。针对复杂场景下红外无人机目标检测不良等问题,本文提出ST-YOLOA目标检测模型。首先,使用Swin Transformer网络架构和协调注意力(CA)机制搭建STCNet骨干特征提取网络;其次,特征融合部分采用带残差结构的PANet路径聚合网络构建特征金字塔提升整体特征提取能力,同时改进了上下采样方式以增强检测能力;最后,使用解耦检测头预测无人机目标的位置。试验结果表明,本文提出的模型检测精度为92.8%,检测速度达到了22帧/s,这表明该模型与其他模型相比具有较好的检测效果,且基本满足实时性检测要求,对于多无人机目标场景下的检测具有现实意义。 展开更多
关键词 红外无人机 目标检测 Swin transformer 协调注意力机制 STCNet
下载PDF
基于Depth-wise卷积和视觉Transformer的图像分类模型 被引量:3
11
作者 张峰 黄仕鑫 +1 位作者 花强 董春茹 《计算机科学》 CSCD 北大核心 2024年第2期196-204,共9页
图像分类作为一种常见的视觉识别任务,有着广阔的应用场景。在处理图像分类问题时,传统的方法通常使用卷积神经网络,然而,卷积网络的感受野有限,难以建模图像的全局关系表示,导致分类精度低,难以处理复杂多样的图像数据。为了对全局关... 图像分类作为一种常见的视觉识别任务,有着广阔的应用场景。在处理图像分类问题时,传统的方法通常使用卷积神经网络,然而,卷积网络的感受野有限,难以建模图像的全局关系表示,导致分类精度低,难以处理复杂多样的图像数据。为了对全局关系进行建模,一些研究者将Transformer应用于图像分类任务,但为了满足Transformer的序列化和并行化要求,需要将图像分割成大小相等、互不重叠的图像块,破坏了相邻图像数据块之间的局部信息。此外,由于Transformer具有较少的先验知识,模型往往需要在大规模数据集上进行预训练,因此计算复杂度较高。为了同时建模图像相邻块之间的局部信息并充分利用图像的全局信息,提出了一种基于Depth-wise卷积的视觉Transformer(Efficient Pyramid Vision Transformer,EPVT)模型。EPVT模型可以实现以较低的计算成本提取相邻图像块之间的局部和全局信息。EPVT模型主要包含3个关键组件:局部感知模块(Local Perceptron Module,LPM)、空间信息融合模块(Spatial Information Fusion,SIF)和“+卷积前馈神经网络(Convolution Feed-forward Network,CFFN)。LPM模块用于捕获图像的局部相关性;SIF模块用于融合相邻图像块之间的局部信息,并利用不同图像块之间的远距离依赖关系,提升模型的特征表达能力,使模型学习到输出特征在不同维度下的语义信息;CFFN模块用于编码位置信息和重塑张量。在图像分类数据集ImageNet-1K上,所提模型优于现有的同等规模的视觉Transformer分类模型,取得了82.6%的分类准确度,证明了该模型在大规模数据集上具有竞争力。 展开更多
关键词 深度学习 图像分类 Depth-wise卷积 视觉transformer 注意力机制
下载PDF
融合卷积注意力和Transformer架构的行人重识别方法 被引量:2
12
作者 王静 李沛橦 +2 位作者 赵容锋 张云 马振玲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期466-476,共11页
行人重识别技术是智能安防系统中的重要方法之一,为构建一个适用各种复杂场景的行人重识别模型,基于现有的卷积神经网络和Transformer模型,提出一种融合卷积注意力和Transformer(FCAT)架构的方法,以增强Transformer对局部细节信息的关... 行人重识别技术是智能安防系统中的重要方法之一,为构建一个适用各种复杂场景的行人重识别模型,基于现有的卷积神经网络和Transformer模型,提出一种融合卷积注意力和Transformer(FCAT)架构的方法,以增强Transformer对局部细节信息的关注。所提方法主要将卷积空间注意力和通道注意力嵌入Transformer架构中,分别加强对图像中重要区域的关注和对重要通道特征的关注,以进一步提高Transformer架构对局部细节特征的提取能力。在3个公开行人重识别数据集上的对比消融实验证明,所提方法在非遮挡数据集上取得了与现有方法相当的结果,在遮挡数据集上的性能得到显著提升。所提方法更加轻量化,在不增加额外计算量和模型参数的情况下,推理速度得到了提升。 展开更多
关键词 行人重识别 深度学习 卷积神经网络 transformer 注意力机制
下载PDF
CNN-Transformer特征融合多目标跟踪算法 被引量:3
13
作者 张英俊 白小辉 谢斌红 《计算机工程与应用》 CSCD 北大核心 2024年第2期180-190,共11页
在卷积神经网络(CNN)中,卷积运算能高效地提取目标的局部特征,却难以捕获全局表示;而在视觉Transformer中,注意力机制可以捕获长距离的特征依赖,但会忽略局部特征细节。针对以上问题,提出一种基于CNN-Transformer双分支主干网络进行特... 在卷积神经网络(CNN)中,卷积运算能高效地提取目标的局部特征,却难以捕获全局表示;而在视觉Transformer中,注意力机制可以捕获长距离的特征依赖,但会忽略局部特征细节。针对以上问题,提出一种基于CNN-Transformer双分支主干网络进行特征提取和融合的多目标跟踪算法CTMOT(CNN-transformer multi-object tracking)。使用基于CNN和Transformer双分支并行的主干网络分别提取图像的局部和全局特征。使用双向桥接模块(two-way braidge module,TBM)对两种特征进行充分融合。将融合后的特征输入两组并行的解码器进行处理。将解码器输出的检测框和跟踪框进行匹配,完成多目标跟踪任务。在多目标跟踪数据集MOT17、MOT20、KITTI以及UADETRAC上进行评估,CTMOT算法的MOTP和IDs指标在四个数据集上均达到了SOTA效果,MOTA指标分别达到了76.4%、66.3%、92.36%和88.57%,在MOT数据集上与SOTA方法效果相当,在KITTI数据集上达到SOTA效果。由于同时完成目标检测和关联,能够端到端进行目标跟踪,跟踪速度可达35 FPS,表明CTMOT算法在跟踪的实时性和准确性上达到了较好的平衡,具有较大潜力。 展开更多
关键词 多目标跟踪 transformer 特征融合
下载PDF
考虑特征重组与改进Transformer的风电功率短期日前预测方法 被引量:4
14
作者 李练兵 高国强 +3 位作者 吴伟强 魏玉憧 卢盛欣 梁纪峰 《电网技术》 EI CSCD 北大核心 2024年第4期1466-1476,I0025,I0027-I0029,共15页
短期日前风电功率预测对电力系统调度计划制定有重要意义,该文为提高风电功率预测的准确性,提出了一种基于Transformer的预测模型Powerformer。模型通过因果注意力机制挖掘序列的时序依赖;通过去平稳化模块优化因果注意力以提高数据本... 短期日前风电功率预测对电力系统调度计划制定有重要意义,该文为提高风电功率预测的准确性,提出了一种基于Transformer的预测模型Powerformer。模型通过因果注意力机制挖掘序列的时序依赖;通过去平稳化模块优化因果注意力以提高数据本身的可预测性;通过设计趋势增强和周期增强模块提高模型的预测能力;通过改进解码器的多头注意力层,使模型提取周期特征和趋势特征。该文首先对风电数据进行预处理,采用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将风电数据序列分解为不同频率的本征模态函数并计算其样本熵,使得风电功率序列重组为周期序列和趋势序列,然后将序列输入到Powerformer模型,实现对风电功率短期日前准确预测。结果表明,虽然训练时间长于已有预测模型,但Poweformer模型预测精度得到提升;同时,消融实验结果验证了模型各模块的必要性和有效性,具有一定的应用价值。 展开更多
关键词 风电功率预测 特征重组 transformer模型 注意力机制 周期趋势增强
下载PDF
基于Transformer和自适应特征融合的矿井低照度图像亮度提升和细节增强方法 被引量:1
15
作者 田子建 吴佳奇 +4 位作者 张文琪 陈伟 周涛 杨伟 王帅 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期297-310,共14页
高质量矿井影像为矿山安全生产提供保障,也有利于提高后续图像分析技术的性能。矿井影像受低照度环境的影响,易出现亮度低,照度不均,颜色失真,细节信息丢失严重等问题。针对上述问题,提出一种基于Transformer和自适应特征融合的矿井低... 高质量矿井影像为矿山安全生产提供保障,也有利于提高后续图像分析技术的性能。矿井影像受低照度环境的影响,易出现亮度低,照度不均,颜色失真,细节信息丢失严重等问题。针对上述问题,提出一种基于Transformer和自适应特征融合的矿井低照度图像亮度提升和细节增强方法。基于生成对抗思想搭建生成对抗式主体模型框架,使用目标图像域而非单一参考图像驱动判别器监督生成器的训练,实现对低照度图像的充分增强;基于特征表示学习理论搭建特征编码器,将图像解耦为亮度分量和反射分量,避免图像增强过程中亮度与颜色特征相互影响从而导致颜色失真问题;设计CEM-Transformer Encoder通过捕获全局上下文关系和提取局部区域特征,能够充分提升整体图像亮度并消除局部区域照度不均;在反射分量增强过程中,使用结合CEM-Cross-Transformer Encoder的跳跃连接将低级特征与深层网络处特征进行自适应融合,能够有效避免细节特征丢失,并在编码网络中添加ECA-Net,提高浅层网络的特征提取效率。制作矿井低照度图像数据集为矿井低照度图像增强任务提供数据资源。试验显示,在矿井低照度图像数据集和公共数据集中,与5种先进的低照度图像增强算法相比,该算法增强图像的质量指标PSNR、SSIM、VIF平均提高了16.564%,10.998%,16.226%和14.438%,10.888%,14.948%,证明该算法能够有效提升整体图像亮度,消除照度不均,避免颜色失真和细节丢失,实现矿井低照度图像增强。 展开更多
关键词 图像增强 图像识别 生成对抗网络 特征解耦 transformer
下载PDF
基于残差U-Net和自注意力Transformer编码器的磁场预测方法 被引量:1
16
作者 金亮 尹振豪 +2 位作者 刘璐 宋居恒 刘元凯 《电工技术学报》 EI CSCD 北大核心 2024年第10期2937-2952,共16页
利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型... 利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型,得到深度学习训练所需的数据集;然后将Transformer模块与U-Net模型结合,并引入短残差机制建立ResUnet-Transformer模型,通过预测图像的像素实现磁场预测;最后通过Targeted Dropout算法和动态学习率调整策略对模型进行优化,解决拟合问题并提高预测精度。计算实例证明,ResUnet-Transformer模型在PMSM和AMT数据集上测试集的平均绝对百分比误差(MAPE)均小于1%,且仅需500组样本。该文提出的磁场预测方法能减少实际工况和多工况下精细模拟和拓扑优化的时间和资源消耗,亦是虚拟传感器乃至数字孪生的关键实现方法之一。 展开更多
关键词 有限元方法 电磁场 深度学习 U-Net transformer
下载PDF
基于Transformer和动态3D卷积的多源遥感图像分类 被引量:1
17
作者 高峰 孟德森 +2 位作者 解正源 亓林 董军宇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期606-614,共9页
多源遥感数据具有互补性和协同性,近年来,基于深度学习的方法已经在多源遥感图像分类中取得了一定进展,但当前方法仍面临关键难题,如多源遥感图像特征表达不一致,融合困难,基于静态推理范式的神经网络缺乏对不同类别地物的适应性。为解... 多源遥感数据具有互补性和协同性,近年来,基于深度学习的方法已经在多源遥感图像分类中取得了一定进展,但当前方法仍面临关键难题,如多源遥感图像特征表达不一致,融合困难,基于静态推理范式的神经网络缺乏对不同类别地物的适应性。为解决上述问题,提出了基于跨模态Transformer和多尺度动态3D卷积的多源遥感图像分类模型。为提高多源特征表达的一致性,设计了基于Transformer的融合模块,借助其强大的注意力建模能力挖掘高光谱和LiDAR数据特征之间的相互作用;为提高特征提取方法对不同地物类别的适应性,设计了多尺度动态3D卷积模块,将输入特征的多尺度信息融入卷积核的调制,提高卷积操作对不同地物的适应性。采用多源遥感数据集Houston和Trento对所提方法进行验证,实验结果表明:所提方法在Houston和Trento数据集上总体准确率分别达到94.60%和98.21%,相比MGA-MFN等主流方法,总体准确率分别至少提升0.97%和0.25%,验证了所提方法可有效提升多源遥感图像分类的准确率。 展开更多
关键词 高光谱图像 激光雷达 transformer 多源特征融合 动态卷积
下载PDF
基于Transformer的陶瓷轴承表面缺陷检测方法 被引量:1
18
作者 安冬 胡荣华 +3 位作者 王丽艳 邵萌 李新然 刘则通 《组合机床与自动化加工技术》 北大核心 2024年第2期160-163,168,共5页
针对传统机器视觉检测方法中,由于陶瓷轴承滚动体表面曲率大、对比度低,表面成像模糊导致后续缺陷检测精度低的问题,提出一种基于Transformer的超分辨率残差网络。首先,网络使用残差学习策略,通过预测模糊图像与清晰图像之间的差值,实... 针对传统机器视觉检测方法中,由于陶瓷轴承滚动体表面曲率大、对比度低,表面成像模糊导致后续缺陷检测精度低的问题,提出一种基于Transformer的超分辨率残差网络。首先,网络使用残差学习策略,通过预测模糊图像与清晰图像之间的差值,实现超分辨率任务;其次,在网络上前端插入通道注意力模块和空间注意力模块并改进L2多头自注意力模块,以增强图像纹理、改善梯度爆炸问题;最后,针对超分辨率重建任务,提出一种两阶段训练策略优化训练过程。自建陶瓷轴承表面缺陷数据集上的大量实验结果表明,所提出网络模型在客观指标与主观评价上均优于MSESRGAN、VSDR等超分辨率算法,重建图像SSIM为0.939,PSNR为36.51 dB。 展开更多
关键词 Si_(3)N_(4)陶瓷轴承 超分辨率重建 transformer 图像恢复 图像增强
下载PDF
融合Transformer和CNN的轻量级人脸识别算法 被引量:1
19
作者 李明 党青霞 《计算机工程与应用》 CSCD 北大核心 2024年第14期96-104,共9页
随着深度学习的发展,卷积神经网络通过堆叠卷积层逐步扩大感受野以融合局部特征的方式已经成为人脸识别(FR)的主流方法,但这种方法存在因忽略人脸全局语义信息和缺乏对人脸重点特征信息的关注造成识别准确率不高,以及大参数量层数的堆... 随着深度学习的发展,卷积神经网络通过堆叠卷积层逐步扩大感受野以融合局部特征的方式已经成为人脸识别(FR)的主流方法,但这种方法存在因忽略人脸全局语义信息和缺乏对人脸重点特征信息的关注造成识别准确率不高,以及大参数量层数的堆叠导致网络难以部署于资源受限设备的问题。因此提出一种融合Transformer和CNN的极其轻量级FR算法gcsamTfaceNet。使用深度可分离卷积构建主干网络以降低算法的参数量;引入通道-空间注意力机制,从通道和空间两个域最优化选择特征以提高对人脸重点区域的关注度;在此基础上,融合Transformer模块以捕获特征图的全局语义信息,克服卷积神经网络在长距离语义依赖性建模方面的局限性,提高算法的全局特征感知能力。参数量仅为6.5×10^(5)的gcsamTfaceNet在9个验证集(LFW、CA-LFW、CP-LFW、CFP-FP、CFP-FF、AgeDB-30、VGG2-FP、IJB-B以及IJB-C)上实验评估,分别取得99.67%、95.60%、89.32%、93.67%、99.65%、96.35%、93.36%、89.43%和91.38%的平均准确率,达到参数量和性能之间较好的权衡。 展开更多
关键词 轻量级人脸识别 卷积神经网络 transformer 注意力机制
下载PDF
基于遥感多参数和CNN-Transformer的冬小麦单产估测 被引量:2
20
作者 王鹏新 杜江莉 +3 位作者 张悦 刘峻明 李红梅 王春梅 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期173-182,共10页
为了提高冬小麦单产估测精度,改善估产模型存在的高产低估和低产高估等现象,以陕西省关中平原为研究区域,选取旬尺度条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)为遥感特征参数,结合卷积神经网络(CNN)局部特... 为了提高冬小麦单产估测精度,改善估产模型存在的高产低估和低产高估等现象,以陕西省关中平原为研究区域,选取旬尺度条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)为遥感特征参数,结合卷积神经网络(CNN)局部特征提取能力和基于自注意力机制的Transformer网络的全局信息提取能力,构建CNN-Transformer深度学习模型,用于估测关中平原冬小麦产量。与Transformer模型(R^(2)为0.64,RMSE为465.40 kg/hm^(2),MAPE为8.04%)相比,CNN-Transformer模型具有更高的冬小麦单产估测精度(R^(2)为0.70,RMSE为420.39 kg/hm^(2),MAPE为7.65%),能够从遥感多参数中提取更多与产量相关的信息,且对于Transformer模型存在的高产低估和低产高估现象均有所改善。基于5折交叉验证法和留一法进一步验证了CNN-Transformer模型的鲁棒性和泛化能力。此外,基于CNN-Transformer模型捕获冬小麦生长过程的累积效应,分析逐步累积旬尺度输入参数对产量估测的影响,评估模型对于冬小麦不同生长阶段的累积过程的表征能力。结果表明,模型能有效捕捉冬小麦生长的关键时期,3月下旬至5月上旬是冬小麦生长的关键时期。 展开更多
关键词 冬小麦 作物估产 遥感多参数 卷积神经网络 transformer模型
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部