The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com...This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and f...Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in th...In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.展开更多
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient e...The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.展开更多
The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect c...The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.展开更多
Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and time...Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
Studied the principle of transient electromagnetic method in coalmine and solved the computation of the whole time apparent resistivity and the relation between apparent resistivity and exploration depth and so on. St...Studied the principle of transient electromagnetic method in coalmine and solved the computation of the whole time apparent resistivity and the relation between apparent resistivity and exploration depth and so on. Studied the work method of transient electromagnetic method in coalmine and obtained reasonable arrangement way. Studied data processing and explanation method of transient electromagnetic method and obtained high quality electric section. Finally the purpose to detect water-bearing body and water-bearing structure in front of roadway in advance, and detect the water-bearing property of the roof and floor rock layer of coal face were realized by use of transient electromagnetic method.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration o...Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.展开更多
Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fo...Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.展开更多
Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goa...Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.展开更多
The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby ...The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby fitting the observed transient electromagnetic response,and performing one-dimensional inversion through induced electromotive force play.In this paper,in the damped least squares inversion,constraints are added to the Jacobian matrix,and simultaneous constraint equations and conventional inversion equations are solved.By weighting the constraint parameters,the difference between adjacent resistivities and layer thicknesses is minimized.Finally,K-type and H-type theoretical models were used to verify the reliability of the algorithm,and compared with the conventional transient electromagnetic damping least squares inversion.展开更多
Uncontrolled coal fires are natural disasters that may cause mineral loss and environmental damage.The traditional loop source transient electromagnetic method can effectively detect the low-resistivity region of coal...Uncontrolled coal fires are natural disasters that may cause mineral loss and environmental damage.The traditional loop source transient electromagnetic method can effectively detect the low-resistivity region of coal fires,but its detection efficiency is not so good for high-resistivity regions.In view of this limitation,a technique based on electrical source transient electromagnetics is proposed in this paper to detect high-resistivity regions in the spontaneous combustion process of coal.Considering the complex geometry of the coal fire area,an unstructured tetrahedral grid is used in this study to realize the spatial discretization of the model,and solve the electromagnetic field based on a vector finite element algorithm.Numerical analysis is used to investigate methods for detecting coal fires and the characteristics of effective anomalies are further examined to provide guidance for practical detection.展开更多
For many years, the “short excavation and short exploration” excavation mode has been mainly used in the underground tunnel excavation of coal mines, which is difficult to meet the needs of rapid tunnel excavation. ...For many years, the “short excavation and short exploration” excavation mode has been mainly used in the underground tunnel excavation of coal mines, which is difficult to meet the needs of rapid tunnel excavation. For this reason, CCTEG Xi’an Research Institute has innovatively proposed a new working mode of “long excavation and long exploration” using directional long drilling and borehole geophysical exploration. This method utilizes directional long boreholes that have already been constructed, and uses transient electromagnetic technology in the borehole to detect the radial range of 30 meters and the depth exceeding 1000 meters of the borehole, ultimately forming a three-dimensional imaging of the entire spatial geological anomaly body, providing reliable technical support for the safety and long-term excavation of the tunnel. This paper introduces the application which is a long-distance advanced detection of 1026 m. .展开更多
For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertica...For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertical magnetic bipolar source in a whole space plane layered medium in order to obtain whole space features. After designing a whole space plane layered medium model, equations were established based on boundary conditions in terms of electromagnetic vector potential. Expressions of electromagnetic fields were obtained by solving these equations. The expressions were computed by the Hankel transform after dispersion. The results in a frequency domain were changed into a time domain by using a multinomial cosine transform method. The expressions were correctly validated by comparing them with the analytical solution in half space. The half space and whole space results show that the whole space features are dear, suggesting that the theory of half space is not suitable for the whole space. Our algorithm supplied the technical instrument for studying the distributed features of whole space transient electromagnetic fields.展开更多
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
基金This work was supported by China Postdoctoral Science Foundation(No.2022M723391)the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)+1 种基金the Central Guiding Local Science and Technology Development Fund Project(No.YDZJSX2021B021)Shanxi Province Basic Research Plan General Project(No.202203021221294).
文摘This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金supported by the National Natural Science Foundation of China(Nos.41564001 and 41572185)the Natural Science Foundation of Jiangxi Province(No.20151BAB203045)
文摘Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
文摘In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.
基金supported by the National Key Scientific Instrument and Equipment Development Project(No.2011YQ03013307)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsKey Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources
文摘The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
基金supported by the Institute of Seismology Foundation, China Earthquake Administration (201326126)
文摘The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.
基金Project 40674074 supported by the National Natural Science Foundation of China20050290501 by the Specialized Research Fund for the Doctoral Programof Higher EducationD200409 by the Scientific Research Fund for Youth of China University of Mining & Technology
文摘Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
文摘Studied the principle of transient electromagnetic method in coalmine and solved the computation of the whole time apparent resistivity and the relation between apparent resistivity and exploration depth and so on. Studied the work method of transient electromagnetic method in coalmine and obtained reasonable arrangement way. Studied data processing and explanation method of transient electromagnetic method and obtained high quality electric section. Finally the purpose to detect water-bearing body and water-bearing structure in front of roadway in advance, and detect the water-bearing property of the roof and floor rock layer of coal face were realized by use of transient electromagnetic method.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金Project(41674109) supported by the National Natural Science Foundation of China
文摘Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.
基金the National Key Research and Development Program of China(No.2016YFC060110403).
文摘Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.
基金supported by the Joint Funds of National Natural Science Foundation of China and Shanxi Province(U1710258 and U1810120)Distinguished Youth Funds of National Natural Science Foundation of China(51925402)+3 种基金Ten Thousand Talent Program of China for Leading Scientists in Science,Technology and Innovation,Shanxi Science and Technology Major Project Funds(No.20201102004)Shanxi“1331 Project”Funds,Shanxi Province Key Laboratory Construction Project Funds(No.202104010910021)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD001,No.2021SX-TD002)National Natural Science Foundation of China(51804208).
文摘Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.
基金sponsored by geological Survey Project of China Geological Survey(DD20189210).
文摘The damped least squares inversion principle is applied to the transient electromagnetic one-dimensional inversion of electrical sources,and a new model is obtained by continuously iterating the initial model,thereby fitting the observed transient electromagnetic response,and performing one-dimensional inversion through induced electromotive force play.In this paper,in the damped least squares inversion,constraints are added to the Jacobian matrix,and simultaneous constraint equations and conventional inversion equations are solved.By weighting the constraint parameters,the difference between adjacent resistivities and layer thicknesses is minimized.Finally,K-type and H-type theoretical models were used to verify the reliability of the algorithm,and compared with the conventional transient electromagnetic damping least squares inversion.
基金Supported by National Key R&D Program of China(No.2018YFC0807900).
文摘Uncontrolled coal fires are natural disasters that may cause mineral loss and environmental damage.The traditional loop source transient electromagnetic method can effectively detect the low-resistivity region of coal fires,but its detection efficiency is not so good for high-resistivity regions.In view of this limitation,a technique based on electrical source transient electromagnetics is proposed in this paper to detect high-resistivity regions in the spontaneous combustion process of coal.Considering the complex geometry of the coal fire area,an unstructured tetrahedral grid is used in this study to realize the spatial discretization of the model,and solve the electromagnetic field based on a vector finite element algorithm.Numerical analysis is used to investigate methods for detecting coal fires and the characteristics of effective anomalies are further examined to provide guidance for practical detection.
文摘For many years, the “short excavation and short exploration” excavation mode has been mainly used in the underground tunnel excavation of coal mines, which is difficult to meet the needs of rapid tunnel excavation. For this reason, CCTEG Xi’an Research Institute has innovatively proposed a new working mode of “long excavation and long exploration” using directional long drilling and borehole geophysical exploration. This method utilizes directional long boreholes that have already been constructed, and uses transient electromagnetic technology in the borehole to detect the radial range of 30 meters and the depth exceeding 1000 meters of the borehole, ultimately forming a three-dimensional imaging of the entire spatial geological anomaly body, providing reliable technical support for the safety and long-term excavation of the tunnel. This paper introduces the application which is a long-distance advanced detection of 1026 m. .
基金Project 40674074 supported by the National Natural Science Foundation of China
文摘For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertical magnetic bipolar source in a whole space plane layered medium in order to obtain whole space features. After designing a whole space plane layered medium model, equations were established based on boundary conditions in terms of electromagnetic vector potential. Expressions of electromagnetic fields were obtained by solving these equations. The expressions were computed by the Hankel transform after dispersion. The results in a frequency domain were changed into a time domain by using a multinomial cosine transform method. The expressions were correctly validated by comparing them with the analytical solution in half space. The half space and whole space results show that the whole space features are dear, suggesting that the theory of half space is not suitable for the whole space. Our algorithm supplied the technical instrument for studying the distributed features of whole space transient electromagnetic fields.