The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine f...Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.展开更多
Transportation sector is one of the most important elements of a country’s economy with its highway,railway,airway and seaway modes,besides the information and communication infrastructure.Transportation sector has a...Transportation sector is one of the most important elements of a country’s economy with its highway,railway,airway and seaway modes,besides the information and communication infrastructure.Transportation sector has a pattern that affects the society continuously with its economic and social inputs that has a significant role in economies of countries in terms of being an important part of manufacturing process and effects of sizable investments on economy.Demands of more comfortable,more reliable,more safe and more punctual transport in developing economy is an arising trend worldwide and this shows an increase the importance of the transportation sector.Establishment of an efficient and functional transportation system is closely related with traffic safety,intermodal integration and balanced modal distribution.In Turkey,an important improvement has been achieved in these issues,but also some basic constitutive problems are still continuing.These constitutional problems can be summarized as providing traffic safety,integration of innovative implementations to transportation system,enhancing of infrastructure and an effective usage of existing infrastructure.展开更多
This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative region...This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative regions in China from 2013 to 2022.It comprehensively considers key indicators from the economic,social,and transportation sectors.The paper constructs a model encompassing 5 latent variables and 15 observed variables.Through in-depth analysis,it reveals the promoting role of transportation systems on economic growth and social development,as well as the demand for transportation system construction and optimization driven by socio-economic development levels.The results indicate that an efficient transportation system can not only directly drive economic growth but also indirectly promote social development by improving social welfare and enhancing quality of life.This paper provides new insights into understanding the complex relationship between transportation systems and socio-economic development and holds significant implications for policymakers in optimizing transportation infrastructure to foster economic and social development.展开更多
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud...Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.展开更多
The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the c...The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios.展开更多
The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to o...The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to optimize the transportation system with the help of this approach. We selected forest vehicle routing data as the case study to minimize the total cost and the distance of the forest transportation system. Matlab software helps us find the best solution for this case by applying three algorithms of Metaheuristics: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Extended Great Deluge (EGD). The results show that GA, compared to ACO and EGD, provides the best solution for the cost and the length of our case study. EGD is the second preferred approach, and ACO offers the last solution.展开更多
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ...With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.展开更多
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch...In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission.展开更多
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan...State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.展开更多
Transport system in Nigeria is predominantly uni-modal as it is estimated that over ninety per cent of goods and passengers are transported by road.The over-reliance on road transport for the transportation of bulk of...Transport system in Nigeria is predominantly uni-modal as it is estimated that over ninety per cent of goods and passengers are transported by road.The over-reliance on road transport for the transportation of bulk of goods and people has contributed greatly to the deterioration of Nigeria’s roads and the attendant increase in road maintenance costs.Researches by scholars have revealed that a single means of transport cannot adequately serve the intra and inter-transport needs of the majority of people living in urban cities.Asaba and Onitsha located at the banks of river Niger have outlets for water-based transport services,which are yet to be fully developed and integrated with the dominant road transport system.Bulky goods that arrived by sea are best transported from the port through the waterways to inland ports.The Onitsha port,which was established in the 1980s has not been functioning and this makes road transport the only option for transportation of goods and people between the two cities.It is against this background,that this paper surveys the transport modes in the two cities and advocates the need for inter-modal transport modes that would ensure seamless movement of people and goods between the two cities and with other parts of the country.The paper submits that for the two cities to derive full benefits of the different transport modes,there is need for efficient inter-modal transport systems linking the two cities and regions in order to minimize the frequent chaotic traffic congestion on the Niger bridge.The optimal utilization of inter-modal transport modes would enable each transport mode to perform its distinctive roles which would lead to faster transportation of passengers and goods as well as ensure reduction in transport costs.The paper also proffers ways of achieving an efficient inter-modal transport system between Asaba and Onitsha and Nigeria at large.展开更多
In current years,the improvement of deep learning has brought about tremendous changes:As a type of unsupervised deep learning algorithm,generative adversarial networks(GANs)have been widely employed in various fields...In current years,the improvement of deep learning has brought about tremendous changes:As a type of unsupervised deep learning algorithm,generative adversarial networks(GANs)have been widely employed in various fields including transportation.This paper reviews the development of GANs and their applications in the transportation domain.Specifically,many adopted GAN variants for autonomous driving are classified and demonstrated according to data generation,video trajectory prediction,and security of detection.To introduce GANs to traffic research,this review summarizes the related techniques for spatio-temporal,sparse data completion,and time-series data evaluation.GAN-based traffic anomaly inspections such as infrastructure detection and status monitoring are also assessed.Moreover,to promote further development of GANs in intelligent transportation systems(ITSs),challenges and noteworthy research directions on this topic are provided.In general,this survey summarizes 130 GAN-related references and provides comprehensive knowledge for scholars who desire to adopt GANs in their scientific works,especially transportation-related tasks.展开更多
The metabolic evolution model of transportation demand for comprehensive transportation systems is put forward on the basis of a metabolic theory of ecology. In the model, the growth rates or changing rates of transpo...The metabolic evolution model of transportation demand for comprehensive transportation systems is put forward on the basis of a metabolic theory of ecology. In the model, the growth rates or changing rates of transportation volumes for the various transportation modes of a city are determined not only by the GDP per capita which reflects the size of the city itself, but also by the relationship of competition and cooperation among transportation modes. The results of empirical analysis for Chinese cities show that the allometric growth exponent in the equation for the variation rate of passenger demand volume on rail is greater than the predicted value of 1/4 in metabolic ecology, whereas the allometric growth relationship is not so evident in the equation for the variation rate of passenger demand volume on road. The changing rate of road transportation is thus mainly affected by the relationship of competition and cooperation among transportation modes for Chinese cities.展开更多
A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the movi...A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the moving platform along the guideway,the levitation subsystem uses six pairs of electromagnets to steadily suspend the moving platform over the guideway.The model of the levitation system,which is a typical nonlinear multi-input multi-output coupling system and has many inner nonlinear coupling characteristics,was deduced.For testifying the model,the levitation mechanism was firstly controlled by proportional-integral-differential(PID) control,and then a lot of input-output data were collected for model parameter identification.The least-square parameter identification method was used.The identification results prove that the model is feasible and suitable for the real system.展开更多
Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system wer...Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system were obtained and four ore transportation systems were analyzed.The results indicate that the pump head of 1 000 m mining system is 100-150 m and that of 5 000 m mining system is 660-750 m.In addition,based on similarity theory,a model of the new transportation system was made,which can simulate more than 5 000 m actual ore transportation system.So both theory and experiment prove that the new pump-lockage ore transportation system is an ideal design for deep sea flexible mining system.展开更多
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ...Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility.展开更多
Sputum transportation from county-level to prefecture-level is an ideal strategy to cover the shortage of the laboratory capability in the resource-poor setting. Here, we firstly evaluated the feasibility of sputum tr...Sputum transportation from county-level to prefecture-level is an ideal strategy to cover the shortage of the laboratory capability in the resource-poor setting. Here, we firstly evaluated the feasibility of sputum transportation system in China by analyzing the culture and molecular diagnosis results from 1982 smear-positive patients with different delay in processing for culture.展开更多
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金funded by Ho Chi Minh City University of Technology(HCMUT),VNU-HCM under Grant Number B2021-20-04.
文摘Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.
文摘Transportation sector is one of the most important elements of a country’s economy with its highway,railway,airway and seaway modes,besides the information and communication infrastructure.Transportation sector has a pattern that affects the society continuously with its economic and social inputs that has a significant role in economies of countries in terms of being an important part of manufacturing process and effects of sizable investments on economy.Demands of more comfortable,more reliable,more safe and more punctual transport in developing economy is an arising trend worldwide and this shows an increase the importance of the transportation sector.Establishment of an efficient and functional transportation system is closely related with traffic safety,intermodal integration and balanced modal distribution.In Turkey,an important improvement has been achieved in these issues,but also some basic constitutive problems are still continuing.These constitutional problems can be summarized as providing traffic safety,integration of innovative implementations to transportation system,enhancing of infrastructure and an effective usage of existing infrastructure.
文摘This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative regions in China from 2013 to 2022.It comprehensively considers key indicators from the economic,social,and transportation sectors.The paper constructs a model encompassing 5 latent variables and 15 observed variables.Through in-depth analysis,it reveals the promoting role of transportation systems on economic growth and social development,as well as the demand for transportation system construction and optimization driven by socio-economic development levels.The results indicate that an efficient transportation system can not only directly drive economic growth but also indirectly promote social development by improving social welfare and enhancing quality of life.This paper provides new insights into understanding the complex relationship between transportation systems and socio-economic development and holds significant implications for policymakers in optimizing transportation infrastructure to foster economic and social development.
基金funded by the National Key R&D Program of China(Grant No.2023YFE0106800)the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.22YJC630109).
文摘Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.
文摘The development of Intelligent Transportation Systems(ITS)is closely intertwined with the growth of every city,serving as a critical component of smart city construction.This paper provides a concise overview of the concept and overall framework of smart transportation.It emphasizes the application of key technologies,including Traffic Element Identification and Perception,data mining,and Smart Transportation System Integration Technology,in the field.Furthermore,the paper elucidates the current practical applications of smart transportation,showcasing its advancements and implementations in real-world scenarios.
文摘The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to optimize the transportation system with the help of this approach. We selected forest vehicle routing data as the case study to minimize the total cost and the distance of the forest transportation system. Matlab software helps us find the best solution for this case by applying three algorithms of Metaheuristics: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Extended Great Deluge (EGD). The results show that GA, compared to ACO and EGD, provides the best solution for the cost and the length of our case study. EGD is the second preferred approach, and ACO offers the last solution.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
基金The work of Vinay Chamola and F.Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles,and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada(NSERC)CREATE Program for Building Trust in Connected and Autonomous Vehicles(TrustCAV).
文摘With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.
文摘In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission.
文摘State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.
文摘Transport system in Nigeria is predominantly uni-modal as it is estimated that over ninety per cent of goods and passengers are transported by road.The over-reliance on road transport for the transportation of bulk of goods and people has contributed greatly to the deterioration of Nigeria’s roads and the attendant increase in road maintenance costs.Researches by scholars have revealed that a single means of transport cannot adequately serve the intra and inter-transport needs of the majority of people living in urban cities.Asaba and Onitsha located at the banks of river Niger have outlets for water-based transport services,which are yet to be fully developed and integrated with the dominant road transport system.Bulky goods that arrived by sea are best transported from the port through the waterways to inland ports.The Onitsha port,which was established in the 1980s has not been functioning and this makes road transport the only option for transportation of goods and people between the two cities.It is against this background,that this paper surveys the transport modes in the two cities and advocates the need for inter-modal transport modes that would ensure seamless movement of people and goods between the two cities and with other parts of the country.The paper submits that for the two cities to derive full benefits of the different transport modes,there is need for efficient inter-modal transport systems linking the two cities and regions in order to minimize the frequent chaotic traffic congestion on the Niger bridge.The optimal utilization of inter-modal transport modes would enable each transport mode to perform its distinctive roles which would lead to faster transportation of passengers and goods as well as ensure reduction in transport costs.The paper also proffers ways of achieving an efficient inter-modal transport system between Asaba and Onitsha and Nigeria at large.
基金supported by the National Natural Science Foundation of China(52221005,52220105001,52272420)European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie(101025896)。
文摘In current years,the improvement of deep learning has brought about tremendous changes:As a type of unsupervised deep learning algorithm,generative adversarial networks(GANs)have been widely employed in various fields including transportation.This paper reviews the development of GANs and their applications in the transportation domain.Specifically,many adopted GAN variants for autonomous driving are classified and demonstrated according to data generation,video trajectory prediction,and security of detection.To introduce GANs to traffic research,this review summarizes the related techniques for spatio-temporal,sparse data completion,and time-series data evaluation.GAN-based traffic anomaly inspections such as infrastructure detection and status monitoring are also assessed.Moreover,to promote further development of GANs in intelligent transportation systems(ITSs),challenges and noteworthy research directions on this topic are provided.In general,this survey summarizes 130 GAN-related references and provides comprehensive knowledge for scholars who desire to adopt GANs in their scientific works,especially transportation-related tasks.
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20060286005)China Postdoctoral Science Foundation(No.20070411018)
文摘The metabolic evolution model of transportation demand for comprehensive transportation systems is put forward on the basis of a metabolic theory of ecology. In the model, the growth rates or changing rates of transportation volumes for the various transportation modes of a city are determined not only by the GDP per capita which reflects the size of the city itself, but also by the relationship of competition and cooperation among transportation modes. The results of empirical analysis for Chinese cities show that the allometric growth exponent in the equation for the variation rate of passenger demand volume on rail is greater than the predicted value of 1/4 in metabolic ecology, whereas the allometric growth relationship is not so evident in the equation for the variation rate of passenger demand volume on road. The changing rate of road transportation is thus mainly affected by the relationship of competition and cooperation among transportation modes for Chinese cities.
基金Projects(50735007,51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High-Tech Research and Development Program of China
文摘A novel maglev transportation system was proposed for large travel range ultra precision motion.The system consists of a levitation subsystem and a propulsion subsystem.During the propulsion subsystem driving the moving platform along the guideway,the levitation subsystem uses six pairs of electromagnets to steadily suspend the moving platform over the guideway.The model of the levitation system,which is a typical nonlinear multi-input multi-output coupling system and has many inner nonlinear coupling characteristics,was deduced.For testifying the model,the levitation mechanism was firstly controlled by proportional-integral-differential(PID) control,and then a lot of input-output data were collected for model parameter identification.The least-square parameter identification method was used.The identification results prove that the model is feasible and suitable for the real system.
基金Project(50574100)supported by the National Natural Science Foundation of China
文摘Based on characteristics of deep sea flexible mining system,a new pump-lockage ore transportation system was designed.According to Bernoulli equation and two-phase hydrodynamics theory,parameters of the new system were obtained and four ore transportation systems were analyzed.The results indicate that the pump head of 1 000 m mining system is 100-150 m and that of 5 000 m mining system is 660-750 m.In addition,based on similarity theory,a model of the new transportation system was made,which can simulate more than 5 000 m actual ore transportation system.So both theory and experiment prove that the new pump-lockage ore transportation system is an ideal design for deep sea flexible mining system.
基金This work was partially supported by The China’s National Key R&D Program(No.2018YFB0803600)Natural Science Foundation of China(No.61801008)+2 种基金Beijing Natural Science Foundation National(No.L172049)Scientific Research Common Program of Beijing Municipal Commission of Education(No.KM201910005025)Defense Industrial Technology Development Program(No.JCKY2016204A102)sponsored this research in parts.
文摘Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility.
基金supported by Bill and Melinda Gabes Foundation Project(51914)
文摘Sputum transportation from county-level to prefecture-level is an ideal strategy to cover the shortage of the laboratory capability in the resource-poor setting. Here, we firstly evaluated the feasibility of sputum transportation system in China by analyzing the culture and molecular diagnosis results from 1982 smear-positive patients with different delay in processing for culture.