Daredevil·Gladiator·Cherry Red·Whirlwind·Flash·Grit·Spider Grass·MercuryWith less to lose,we take a risk,creating challenges and pushingourselves in ways we only fantasized about whi...Daredevil·Gladiator·Cherry Red·Whirlwind·Flash·Grit·Spider Grass·MercuryWith less to lose,we take a risk,creating challenges and pushingourselves in ways we only fantasized about while living in the safezone.Self-tested,defying limits,we feel invigorated.Each stepwe take towards our wildest dreams brings us one step closer tothe edge.This dynamic palette merges bold and muted tones.Itschameleon nature applies from active to formal wear.展开更多
Inquisitor Making sense of the static around us,digging deeper permeates every aspect of our lives.Scrutinizing instead of assuming,we are inspired to self-educate which infiltrates everything from our consumer decisi...Inquisitor Making sense of the static around us,digging deeper permeates every aspect of our lives.Scrutinizing instead of assuming,we are inspired to self-educate which infiltrates everything from our consumer decisions to global perspectives.Self-identification through brands or political movements loses steam as perspective is gained through more unbiased or raw outlets.展开更多
The latest release of "2009 China Luxury Forecast" shows that while the financial crisis is leading a general decline in demand for luxury brands in Europe,America and Japan,the global economic downturn has ...The latest release of "2009 China Luxury Forecast" shows that while the financial crisis is leading a general decline in demand for luxury brands in Europe,America and Japan,the global economic downturn has had limited impact on Chinese luxury consumption and that there is widespread confidence in the future among Chinese luxury consumers.展开更多
In this paper, the monthly rainfall statistical data of Nanning City, Capital of </span><span style="font-family:Verdana;">Guangxi Zhuang Autonomous Region, China, from 2006 to 2018, were col<...In this paper, the monthly rainfall statistical data of Nanning City, Capital of </span><span style="font-family:Verdana;">Guangxi Zhuang Autonomous Region, China, from 2006 to 2018, were col</span><span style="font-family:Verdana;">lected. On the basis of qualitative analysis of the rainfall seasonal changing law, the non-linear seasonal rainfall forecast model on Nanning City with the method of Trend Comparison Ratio (TCR) was established by the statistical analysis </span><span style="font-family:Verdana;">software Office Excel 2013. The model was used to predict the rainfall in</span><span style="font-family:Verdana;"> spring, summer, autumn and winter in Nanning in 2019. The results were: 286.41 mm, 695.79 mm, 292.20 mm and 118.11</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">mm, respectively. It was also found that the predicted results were consistent with the seasonal distribution cha</span><span style="font-family:Verdana;">racteristics, annual distribution characteristics and the trend of historica</span><span style="font-family:Verdana;">l </span><span style="font-family:Verdana;">rainfall time series fluctuation, through the qualitative analysis of figures.</span><span style="font-family:Verdana;"> Compared with the actual measured rainfall data of Nanning City in 2019 in the China Statistical Yearbook (2020), the predicted values are </span></span><span style="font-family:Verdana;">basically </span><span style="font-family:Verdana;">consistent with the measured values.展开更多
Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convi...Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend.展开更多
With the continuous development of machine learning and the increasing complexity of financial data analysis,it is more popular to use models in the field of machine learning to solve the hot and difficult problems in...With the continuous development of machine learning and the increasing complexity of financial data analysis,it is more popular to use models in the field of machine learning to solve the hot and difficult problems in the financial industry.To improve the effectiveness of stock trend prediction and solve the problems in time series data processing,this paper combines the fuzzy affiliation function with stock-related technical indicators to obtain nominal data that can widely reflect the constituent stocks in the case of time series changes by analysing the S&P 500 index.Meanwhile,in order to optimise the current machine learning algorithm in which the setting and adjustment of hyperparameters rely too much on empirical knowledge,this paper combines the deep forest model to train the stock data separately.The experimental results show that(1)the accuracy of the extreme random forest and the accuracy of the multi-grain cascade forest are both higher than that of the gated recurrent unit(GRU)model when the un-fuzzy index-adjusted dataset is used as features for input,(2)the accuracy of the extreme random forest and the accuracy of the multigranular cascade forest are improved by using the fuzzy index-adjusted dataset as features for input,(3)the accuracy of the fuzzy index-adjusted dataset as features for inputting the extreme random forest is improved by 18.89% compared to that of the un-fuzzy index-adjusted dataset as features for inputting the extreme random forest and(4)the average accuracy of the fuzzy index-adjusted dataset as features for inputting multi-grain cascade forest increased by 5.67%.展开更多
This paper presents a comprehensive analysis of global human trafficking trends over a twenty-year period, leveraging a robust dataset from the Counter Trafficking Data Collaborative (CTDC). The study unfolds in a sys...This paper presents a comprehensive analysis of global human trafficking trends over a twenty-year period, leveraging a robust dataset from the Counter Trafficking Data Collaborative (CTDC). The study unfolds in a systematic manner, beginning with a detailed data collection phase, where ethical and legal standards for data usage and privacy are strictly observed. Following collection, the data undergoes a rigorous preprocessing stage, involving cleaning, integration, transformation, and normalization to ensure accuracy and consistency for analysis. The analytical phase employs time-series analysis to delineate historical trends and utilizes predictive modeling to forecast future trajectories of human trafficking using the advanced analytical capabilities of Power BI. A comparative analysis across regions—Africa, the Americas, Asia, and Europe—is conducted to identify and visualize the distribution of human trafficking, dissecting the data by victim demographics, types of exploitation, and duration of victimization. The findings of this study not only offer a descriptive and predictive outlook on trafficking patterns but also provide insights into the regional nuances that influence these trends. The article underscores the prevalence and persistence of human trafficking, identifies factors contributing to its evolution, and discusses the implications for policy and law enforcement. By integrating a methodological approach with quantitative analysis, this research contributes to the strategic planning and resource allocation for combating human trafficking. It highlights the necessity for continued research and international cooperation to effectively address and mitigate this global issue. The implications of this research are significant, offering actionable insights for policymakers, law enforcement, and advocates in the ongoing battle against human trafficking.展开更多
In this paper electric load is forecast for the classified power consumers of Shanghai urban area for the scheduled years in short term and in long term respectively. The monthly load in 1999 is forecast on the basis ...In this paper electric load is forecast for the classified power consumers of Shanghai urban area for the scheduled years in short term and in long term respectively. The monthly load in 1999 is forecast on the basis of the data during 1992~1998, and the approximate load in 2010 is forecast on the basis of the data during 1990~1998.展开更多
Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, P...Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff. The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years.展开更多
This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-t...This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-trical load forecasting considering the factors, past data of the load, respective weather condition and finan-cial growth of the people. These factors are derived by curve fitting technique. Then simulation has been conducted using MATLAB tools. Here it has been suggested that consideration of 20 years data for a devel-oping country should be ignored as the development of a country is highly unpredictable. However, the im-portance of the past data should not be ignored. Here, just previous five years data are used to determine the above factors.展开更多
Assessment of the current status of Lake Baikal proved to be based on changes in natural (“preindustrial”) chemical content in basic abiotic and biological compartments of the Lake geosystem. This approach was used ...Assessment of the current status of Lake Baikal proved to be based on changes in natural (“preindustrial”) chemical content in basic abiotic and biological compartments of the Lake geosystem. This approach was used to evaluate background “base-line levels” of 6 major and about 50 minor and trace ele-ments in the Lake Baikal water body using a number of most reliable data re-ported within 1992-2012. In terms of environment geochemistry Baikal is one of the purest water reservoirs on the Earth. A simple mass balance model was proposed for assessing possible anthropogenic impact on Baikal water geo-chemistry. Estimations of change trends showed that only for Na+, SO42-, Cl- and Mo growth rate of their average concentrations in the Lake occurred to be 1%, 3%, 7% and 2% in every 10 years. Space-time monitoring schedules for all water body compartments of the Lake are proposed as well as similar moni-toring programs for tributaries, precipitations, bottom sediments, aquatic biota.展开更多
The main aim of this research work is to be aware of the road traffic accident scenario, injurious effects and pattern in Bangladesh. Moreover we are interested to forecast the magnitude of road traffic accidents for ...The main aim of this research work is to be aware of the road traffic accident scenario, injurious effects and pattern in Bangladesh. Moreover we are interested to forecast the magnitude of road traffic accidents for the future so that decision makers can make appropriate decision for precaution. This study also provides an assessment of road traffic accidents in Bangladesh and its impact based on data collected for the period of 1971 to 2017. In this study we have tried to pick up the main reasons of road accidents and to observe the tremendous situation. The study observed that the general trends of road traffic accident (RTA), deaths and injuries reveal that the number of RTA, deaths and injuries increased gradually with little fluctuations form 1971 to 2007 and after 2007 there is a slow decreasing trend. Although the number of RTA and deaths observed decreasing trend in recent years, the ratio of number of deaths to number of accident increased significantly. The rate of register vehicles per 10,000 people increased moderately throughout the period but a sharp increment is exhibited from 2009. Highest percentage of RTA (34%) and deaths is due to RTA (32%) in Dhaka division while the lowest percentage of RTA (4%) in Barisal and Sylhet divisions and deaths is due to RTA (3%) in Barisal division. It is noticed that the maximum number of injuries occurred between ages 21 and 30 while the maximum number of deaths occurred between ages 11 and 30. Most of the RTA and deaths due to RTA are caused by run over by vehicles and head to head collision. The severity of occurring road accident and number of deaths are higher during the festive periods because of involving higher frequency of traveling than usual. The time plot shows that the graph maintains a decreasing movement from 2012 to 2015 but increases from 2015 to 2017. In the research an additive time series model approach is applied. It included the estimation of trend, seasonal variation and random variation using triple exponential smoothing method. We performed forecasting of RTA eliminating seasonal impact for the next three consecutive years (2018-2020) with 95% confidence interval using Holt-Winters exponential technique.展开更多
Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT ...Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations axe larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.展开更多
文摘Daredevil·Gladiator·Cherry Red·Whirlwind·Flash·Grit·Spider Grass·MercuryWith less to lose,we take a risk,creating challenges and pushingourselves in ways we only fantasized about while living in the safezone.Self-tested,defying limits,we feel invigorated.Each stepwe take towards our wildest dreams brings us one step closer tothe edge.This dynamic palette merges bold and muted tones.Itschameleon nature applies from active to formal wear.
文摘Inquisitor Making sense of the static around us,digging deeper permeates every aspect of our lives.Scrutinizing instead of assuming,we are inspired to self-educate which infiltrates everything from our consumer decisions to global perspectives.Self-identification through brands or political movements loses steam as perspective is gained through more unbiased or raw outlets.
文摘The latest release of "2009 China Luxury Forecast" shows that while the financial crisis is leading a general decline in demand for luxury brands in Europe,America and Japan,the global economic downturn has had limited impact on Chinese luxury consumption and that there is widespread confidence in the future among Chinese luxury consumers.
文摘In this paper, the monthly rainfall statistical data of Nanning City, Capital of </span><span style="font-family:Verdana;">Guangxi Zhuang Autonomous Region, China, from 2006 to 2018, were col</span><span style="font-family:Verdana;">lected. On the basis of qualitative analysis of the rainfall seasonal changing law, the non-linear seasonal rainfall forecast model on Nanning City with the method of Trend Comparison Ratio (TCR) was established by the statistical analysis </span><span style="font-family:Verdana;">software Office Excel 2013. The model was used to predict the rainfall in</span><span style="font-family:Verdana;"> spring, summer, autumn and winter in Nanning in 2019. The results were: 286.41 mm, 695.79 mm, 292.20 mm and 118.11</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">mm, respectively. It was also found that the predicted results were consistent with the seasonal distribution cha</span><span style="font-family:Verdana;">racteristics, annual distribution characteristics and the trend of historica</span><span style="font-family:Verdana;">l </span><span style="font-family:Verdana;">rainfall time series fluctuation, through the qualitative analysis of figures.</span><span style="font-family:Verdana;"> Compared with the actual measured rainfall data of Nanning City in 2019 in the China Statistical Yearbook (2020), the predicted values are </span></span><span style="font-family:Verdana;">basically </span><span style="font-family:Verdana;">consistent with the measured values.
文摘Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend.
基金Fundamental Research Foundation for Universities of Heilongjiang Province,Grant/Award Number:LGYC2018JQ003。
文摘With the continuous development of machine learning and the increasing complexity of financial data analysis,it is more popular to use models in the field of machine learning to solve the hot and difficult problems in the financial industry.To improve the effectiveness of stock trend prediction and solve the problems in time series data processing,this paper combines the fuzzy affiliation function with stock-related technical indicators to obtain nominal data that can widely reflect the constituent stocks in the case of time series changes by analysing the S&P 500 index.Meanwhile,in order to optimise the current machine learning algorithm in which the setting and adjustment of hyperparameters rely too much on empirical knowledge,this paper combines the deep forest model to train the stock data separately.The experimental results show that(1)the accuracy of the extreme random forest and the accuracy of the multi-grain cascade forest are both higher than that of the gated recurrent unit(GRU)model when the un-fuzzy index-adjusted dataset is used as features for input,(2)the accuracy of the extreme random forest and the accuracy of the multigranular cascade forest are improved by using the fuzzy index-adjusted dataset as features for input,(3)the accuracy of the fuzzy index-adjusted dataset as features for inputting the extreme random forest is improved by 18.89% compared to that of the un-fuzzy index-adjusted dataset as features for inputting the extreme random forest and(4)the average accuracy of the fuzzy index-adjusted dataset as features for inputting multi-grain cascade forest increased by 5.67%.
文摘This paper presents a comprehensive analysis of global human trafficking trends over a twenty-year period, leveraging a robust dataset from the Counter Trafficking Data Collaborative (CTDC). The study unfolds in a systematic manner, beginning with a detailed data collection phase, where ethical and legal standards for data usage and privacy are strictly observed. Following collection, the data undergoes a rigorous preprocessing stage, involving cleaning, integration, transformation, and normalization to ensure accuracy and consistency for analysis. The analytical phase employs time-series analysis to delineate historical trends and utilizes predictive modeling to forecast future trajectories of human trafficking using the advanced analytical capabilities of Power BI. A comparative analysis across regions—Africa, the Americas, Asia, and Europe—is conducted to identify and visualize the distribution of human trafficking, dissecting the data by victim demographics, types of exploitation, and duration of victimization. The findings of this study not only offer a descriptive and predictive outlook on trafficking patterns but also provide insights into the regional nuances that influence these trends. The article underscores the prevalence and persistence of human trafficking, identifies factors contributing to its evolution, and discusses the implications for policy and law enforcement. By integrating a methodological approach with quantitative analysis, this research contributes to the strategic planning and resource allocation for combating human trafficking. It highlights the necessity for continued research and international cooperation to effectively address and mitigate this global issue. The implications of this research are significant, offering actionable insights for policymakers, law enforcement, and advocates in the ongoing battle against human trafficking.
文摘In this paper electric load is forecast for the classified power consumers of Shanghai urban area for the scheduled years in short term and in long term respectively. The monthly load in 1999 is forecast on the basis of the data during 1992~1998, and the approximate load in 2010 is forecast on the basis of the data during 1990~1998.
基金National Natural Science Foundation of China, No. 49731030 Knowledge Innovation Project of CAS, No. 210016
文摘Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff. The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years.
文摘This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-trical load forecasting considering the factors, past data of the load, respective weather condition and finan-cial growth of the people. These factors are derived by curve fitting technique. Then simulation has been conducted using MATLAB tools. Here it has been suggested that consideration of 20 years data for a devel-oping country should be ignored as the development of a country is highly unpredictable. However, the im-portance of the past data should not be ignored. Here, just previous five years data are used to determine the above factors.
文摘Assessment of the current status of Lake Baikal proved to be based on changes in natural (“preindustrial”) chemical content in basic abiotic and biological compartments of the Lake geosystem. This approach was used to evaluate background “base-line levels” of 6 major and about 50 minor and trace ele-ments in the Lake Baikal water body using a number of most reliable data re-ported within 1992-2012. In terms of environment geochemistry Baikal is one of the purest water reservoirs on the Earth. A simple mass balance model was proposed for assessing possible anthropogenic impact on Baikal water geo-chemistry. Estimations of change trends showed that only for Na+, SO42-, Cl- and Mo growth rate of their average concentrations in the Lake occurred to be 1%, 3%, 7% and 2% in every 10 years. Space-time monitoring schedules for all water body compartments of the Lake are proposed as well as similar moni-toring programs for tributaries, precipitations, bottom sediments, aquatic biota.
文摘The main aim of this research work is to be aware of the road traffic accident scenario, injurious effects and pattern in Bangladesh. Moreover we are interested to forecast the magnitude of road traffic accidents for the future so that decision makers can make appropriate decision for precaution. This study also provides an assessment of road traffic accidents in Bangladesh and its impact based on data collected for the period of 1971 to 2017. In this study we have tried to pick up the main reasons of road accidents and to observe the tremendous situation. The study observed that the general trends of road traffic accident (RTA), deaths and injuries reveal that the number of RTA, deaths and injuries increased gradually with little fluctuations form 1971 to 2007 and after 2007 there is a slow decreasing trend. Although the number of RTA and deaths observed decreasing trend in recent years, the ratio of number of deaths to number of accident increased significantly. The rate of register vehicles per 10,000 people increased moderately throughout the period but a sharp increment is exhibited from 2009. Highest percentage of RTA (34%) and deaths is due to RTA (32%) in Dhaka division while the lowest percentage of RTA (4%) in Barisal and Sylhet divisions and deaths is due to RTA (3%) in Barisal division. It is noticed that the maximum number of injuries occurred between ages 21 and 30 while the maximum number of deaths occurred between ages 11 and 30. Most of the RTA and deaths due to RTA are caused by run over by vehicles and head to head collision. The severity of occurring road accident and number of deaths are higher during the festive periods because of involving higher frequency of traveling than usual. The time plot shows that the graph maintains a decreasing movement from 2012 to 2015 but increases from 2015 to 2017. In the research an additive time series model approach is applied. It included the estimation of trend, seasonal variation and random variation using triple exponential smoothing method. We performed forecasting of RTA eliminating seasonal impact for the next three consecutive years (2018-2020) with 95% confidence interval using Holt-Winters exponential technique.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600603)the National Natural Science Foundation of China(Grant Nos.U1502233,41320104007 and 41775083)supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations axe larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.