The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H...The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.展开更多
Plant trichomes are a specialized cellular tissue that functions in resistance to biotic and abiotic stresses.In rice,three transcription-factor genes:OsWOX3B,HL6,and OsSPL10,have been found to control trichome develo...Plant trichomes are a specialized cellular tissue that functions in resistance to biotic and abiotic stresses.In rice,three transcription-factor genes:OsWOX3B,HL6,and OsSPL10,have been found to control trichome development.Although studies have shown interactions between the three genes,their full relationship in trichome development is unclear.We found that the expression levels of OsWOX3B and HL6 were both reduced in OsSPL10-knockout plants but increased in OsSPL10-overexpression plants,suggesting that OsSPL10 positively regulates their expression.Physical interaction between OsSPL10 and OsWOX3B was found both in vivo and in vitro and attenuated their abilities to bind to the promoter of HL6 to activate its transcription.This mechanism may regulate trichome length by adjusting the expression of HL6.A rice gene network regulating trichome development is proposed.展开更多
The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.Howev...The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.However,the development of rice trichomes remains poorly understood.In this study,we conducted ethylmethane sulfonate(EMS)-mediated mutagenesis on the wild-type(WT)indica rice‘Xida 1B’.Phenotypic analysis led to the screening of a mutant that is defective in trichome development,designated lhl1(less hairy leaf 1).We performed map-based cloning and localized the mutated gene to the 70-kb interval between the molecular markers V-9 and V-10 on chromosome 2.The locus LOC_Os02g25230 was identified as the candidate gene by sequencing.We constructed RNA interference(LHL1-RNAi)and overexpression lines(LHL1-OE)to verity the candidate gene.The leaves of the LHL1-RNAi lines showed the same trichome developmental defects as the lhl1 mutant,whereas the trichome morphology on the leaf surface of the LHL1-OE lines was similar to that of the WT,although the number of trichomes was significantly higher.Quantitative real-time PCR(RT-qPCR)analysis revealed that the expression levels of auxin-related genes and positive regulators of trichome development in the lhl1 mutant were down-regulated compared with the WT.Hormone response analysis revealed that LHL1 expression was affected by auxin.The results indicate that the influence of LHL1 on trichome development in rice leaves may be associated with an auxin pathway.展开更多
Micromorphology of glandular hairs on the leaves of Salvia officinalis L. and Salvia triloba L. was investigated by light microscopy. We noticed similiarity and variation between the two species regarding morpholo...Micromorphology of glandular hairs on the leaves of Salvia officinalis L. and Salvia triloba L. was investigated by light microscopy. We noticed similiarity and variation between the two species regarding morphology of glandular trichomes. Two main types of glandular trichomes were identified on both species: peltate and capitate. Peltate trichomes consisted of a basal cell, one stalk cell and a large multisecretory head in S. officinalis L. In S. triloba L. peltate trichomes posses a basal cell, a short unicellular stalk, and a large secretory head with 8 secretory cells. In Salvia officinalis L., four types of capitate trichomes have been distinguished. Five types of capitate trichomes have been found in Salvia triloba L. The fifth type of capitate trichome, called digitiform trichome was found in S. triloba L. This determined interspecific diversity between the two Salvia species.展开更多
[Objective] The aim was to study the effect of climate and soil on the content of surface trichome exudates from fresh flue-cured leaves. [Method] The experiment was conducted in 2009 in Longgang, Weining and Tianzhu ...[Objective] The aim was to study the effect of climate and soil on the content of surface trichome exudates from fresh flue-cured leaves. [Method] The experiment was conducted in 2009 in Longgang, Weining and Tianzhu of Guizhou Province with flue-cured tobacco variety Yun 85. Mature tobacco leaves were taken from lower, middle and upper plant positions respectively and major cuticular com-ponents of the leaves were extracted with methylene chloride and their chemical compositions were analyzed with GC-MS. [Result] The result showed that there was large difference among trichome exudates of leaves grown under different climatic conditions. The leaf trichome exudates from Tianzhu were quite higher than those from Weining and Longgang, and trichome exudates difference between Tianzhu and Longgang was significant. Soil conditions had considerable effect on the content of tobacco leaf surface trichome exudates, leaf from Longgang soil had highest con-tent, fol owed by Tianzhu soil leaf, Weining soil leaf had lowest content. Under vari-ous climatic conditions, the contents of leaf trichome exudates of same soil were in-consistent, indicating the presence of certain climate and soil factor interaction; The contents of leaf trichome exudates from four cultivars in Longgang showed large difference, Nanjiang 3 was the lowest, fol owed by K326, Guiyan 201 was high, and Yunyan85 the highest. The content of leaf trichome exudates of Yunyan85 was more than two times of that of Nanjiang 3. [Conclusion] The Effect of climate factor on the content of leaf trichome exudates was greater than that of cultivar, which was then larger than soil condition.展开更多
1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesi...1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.展开更多
As superficial structures,non-glandular trichomes,protect plant organs against multiple biotic and abiotic stresses.The protective and defensive roles of these epidermal appendages are crucial to developing organs and...As superficial structures,non-glandular trichomes,protect plant organs against multiple biotic and abiotic stresses.The protective and defensive roles of these epidermal appendages are crucial to developing organs and can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds,primarily fl avonoids.Both the formation of trichomes and the accumulation of phenolics are interrelated at the molecular level.During the early stages of development,non-glandular trichomes show strong morphological similarities to glandular ones such as the balloon-like apical cells with numerous phenolics.At later developmental stages,and during secondary wall thickening,phenolics are transferred to the cell walls of the trichomes.Due to the diff use deposition of phenolics in the cell walls,trichomes provide protection against UV-B radiation by behaving as optical fi lters,screening out wavelengths that could damage sensitive tissues.Protection from strong visible radiation is also aff orded by increased surface light refl ectance.Moreover,the mixtures of trichome phenolics represent a superfi-cial chemical barrier that provides protection against biotic stress factors such as herbivores and pathogens.Although the cells of some trichomes die at maturity,they can modulate their quantitative and qualitative characteristics during development,depending on the prevailing conditions of the external biotic or abiotic environment.In fact,the structure and chemical constituents of trichomes may change due to the particular light regime,herbivore damage,wounding,water stress,salinity and the presence of heavy metals.Hence,trichomes represent dynamic protective structures that may greatly aff ect the outcome of many plant–environment interactions.展开更多
Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could...Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could be a candidate gene for the T_1 locus.The ortholog of GhHD-1A in the hairless accession Gossypium barbadense cv.Hai7124 was interrupted by a long terminal repeat(LTR)retrotransposon,while GhHD-1A worked well in the hairy accession Gossypium hirsutum acc.T586.Sequence and phylogenetic analysis showed that GhHD-1A belonged to the HD-Zip IV gene family,which mainly regulated epidermis hair development in plants.Silencing of GhHD-1A and its homoeologs GhHD-1D in allotetraploid T586and Hai7124 could significantly reduce the density of leaf hairs and affect the expression levels of other genes related to leaf trichome formation.Further analysis found that GhHD-1A mainly regulated trichome initiation on the upper epidermal hairs of leaves in cotton,while the up-regulated expression of GhHD-1A in different organs/tissues also altered epidermal trichome development.This study not only helps to unravel the important roles of GhHD-1A in regulating trichome initiation in cotton,but also provides a reference for exploring the different forms of trichome development in plants.展开更多
Trichomes are specialized structures developed from epidermal cells and can protect plants against biotic and abiotic stresses.Trichomes cover carrots during the generative phase.However,the morphology of the carrot t...Trichomes are specialized structures developed from epidermal cells and can protect plants against biotic and abiotic stresses.Trichomes cover carrots during the generative phase.However,the morphology of the carrot trichomes and candidate genes controlling the formation of trichomes are still unclear.This study found that carrot trichomes were nonglandular and unbranched hairs distributed on the stem,leaf,petiole,pedicel,and seed of carrot.Resequencing analysis of a trichome mutant with sparse and short trichomes(sst)and a wild type(wt)with long and dense trichomes on carrot stems was conducted.A total of 15396 genes containing nonsynonymous mutations in sst were obtained,including 42 trichomerelated genes.We also analyzed the transcriptome of the trichomes on secondary branches when these secondary branches were 10 cm long between wt and sst and obtained 6576 differentially expressed genes(DEGs),including 24 trichome-related genes.qRT-PCR validation exhibited three significantly up-regulated DEGs,20 significantly downregulated,and one with no difference.We considered both the resequencing and transcriptome sequencing analyses and found that 12 trichome-related genes that were grouped into five transcription factor families containing nonsynonymous mutations and significantly down-regulated in sst.Therefore,these genes are potentially promising candidate genes whose nonsynonymous mutations and down-regulation may result in scarce and short trichomes mutation on carrot stems in sst.展开更多
Pollen and trichome morphology of the genus Betula were evaluated from three main habitats in Iran using light and electron microscopy.Pollen types were identical and tri-porate;however,in terms of quantitative data,s...Pollen and trichome morphology of the genus Betula were evaluated from three main habitats in Iran using light and electron microscopy.Pollen types were identical and tri-porate;however,in terms of quantitative data,some differences were observed in exine(outside)wall thickness,length of polar axis and length of equatorial axis,possibly due to the environment.Pollen alone is insufficient to separate species of Iranian birch.Investigation of the trichome trait(small hairs or other outgrowths)revealed that birch species in Iran belong to:(1)Betula litwinowii Doluch.according to the low density of trichomes on the adaxial surface of the leaves and the lack of trichomes on the abaxial surface and many trichomes on the petioles;(2)Betula pendula Roth.due to the absence of trichomes on the adaxial surface and the low density of trichomes on the abaxial surface;and,(3)in the adaxial and abaxial surfaces of leaves and petioles,the trichomes had different types of pilose(long,soft hairs),and this strengthens the possibility of a different species or more likely a hybrid of B.pendula.展开更多
Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that dir...Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that directly affect fruit appearance and plant management.This study used RNA sequencing technology to analyze the transcriptomes of two parts of the inflorescence branch,namely inflorescence stems with flagellated trichomes and pedicels with both flagellated and glandular trichomes.Comparative transcriptomic analysis showed that many transcription factors(TFs)are potentially involved in the formation and development of trichomes.The accumulation of RsETC1,a TF of the R3-MYB family,was significantly higher in inflorescence stems than in pedicels;quantitative reverse transcription PCR(qRTPCR)verified that its expression was significantly higher in inflorescence stems than in pedicels during the first three development stages,indicating its inhibitory action on the initiation of glandular trichomes in R.sterilis.The mRNA level of RsETC1 accumulated to significantly higher levels in trichomeless tissues than in tissues with trichromes,suggesting that this gene may inhibit the formation of trichomes in R.sterilis.Over-expression of RsETC1 in Arabidopsis resulted in glabrous phenotypes,and the expression of trichome-related endogenous genes,except for TTG1,was markedly reduced.In addition,the contents of the phytohormones jasmonic acid(JA),gibberellin A3(GA_(3)),and cytokinins(CKs)in pedicels were significantly higher than those in inflorescence stems,and the expression patterns of the genes related to hormone biosynthesis and signal transduction presented consistent responses,suggesting that the transduction of these hormones might be crucial for trichome initiation and development.These data provide a new perspective for revealing the molecular mechanism of trichome formation in R.sterilis.展开更多
Trichomes are specialized epidermal cells that plav multiple roles in plant development.However,knowledge about the molecular mechanism of trichome development in rice is limited.In this study,a hairy leaf locus HL6SW...Trichomes are specialized epidermal cells that plav multiple roles in plant development.However,knowledge about the molecular mechanism of trichome development in rice is limited.In this study,a hairy leaf locus HL6SWWR of rice variety Suwangwanger(SWWR)was identified by map-based cloning.Transgenic complementation and knock-out mutation demonstrated that HL6SWWR regulated trichomes on leaves and expression levels of HL6SWWR affected trichome elongation.Transgenic experiments of PROswwr:HL6nipand PROnip:HL6swwr indicated that the promoter and coding sequences of HL6swwr were indispensable for trichome regulation.Sequencing alignment of the promoter and coding regions of HL6 in 22 varieties showed that some c/s-binding elements in the promoter region may be related to trichome development,while no decisive variation was found in the coding sequence.Furthermore,RNA-sequencing analysis revealed that 1415 differential expression genes(DEGs)were detected in hl6SWWR mutant vs wild type and that 1010 DEGs were found in HL6SWWR complementary transgenic line vs wild type.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis showed that most of the DEGs were involved in metabolite pathway,secondary metabolite biosynthesis,plant pathogen interaction and phytohormone signal transduction in both the two groups.The results indicated that these enhanced pathways are critical during trichome development in rice.Taken together,our results provided new views into the regulatory mechanism of trichome formation in rice.展开更多
Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana(Onagraceae) were collected wit...Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana(Onagraceae) were collected with laser microdissection and analyzed by gas chromatography-mass spectrometry. The volatile compound 4-hydroxy-4-methylpentan-2-one(1) was identified. We found that compound 1 displays antimicrobial, insecticidal, and phytotoxic activities. These results suggest that compound 1 might function as a defensive compound in the capitate glandular trichomes of O. glazioviana against pathogens, insect herbivores, and presumably competitive plants as well.展开更多
The TTG1 transcription factor plays an important role in the formation of plant trichomes. Based on the R. rugosa transcriptome data, this study cloned a R. rugosa TTG1 gene, named RrTTG1, and carried out bioinformati...The TTG1 transcription factor plays an important role in the formation of plant trichomes. Based on the R. rugosa transcriptome data, this study cloned a R. rugosa TTG1 gene, named RrTTG1, and carried out bioinformatics analysis and fluorescence quantitative analysis to explore the relationship between TTG1 gene and R. rugosa trichomes formation, in order to lay a good foundation to cultivate a thornless plant in the family Rosaceae. In this experiment, six hybrid cultivars of R. rugosa “Zizhi”, R. rugosa “Xizi”, R. rugosa “Tang fen”, R. rugosa “Hun chun”, R. rugosa “Zi long wo chi” and R. rugosa “Tian e huang” were used as experimental materials, and the cDNA full length of this gene was obtained by RT-PCR and RACE, and the full length of the cDNA was 1348 bp. After bioinformatics analysis, it is predicted that its molecular formula is C1723H2661N465O529S12, the molecular weight is 38.71 KB, and the isoelectric point is 5.00. Its instability index is 54.30, which belongs to unstable protein;and its hydrophilic amino acid distribution is relatively uniform, and the amount is larger than hydrophobic amino acid, which belongs to hydrophilic protein. Phylogenetic tree was constructed for the TTG1 gene. Evolutionary analysis indicated that RrTTG1 is closely related to the TTG1 protein of Rosaceae family, and has a close relationship with other families. The expression analysis showed that the expression of RrTTG1 protein was negatively correlated with the trichome content of R. rugosa stems and leaves. The expression levels of the three spiny varieties of R. rugosa “Hun chun”, R. rugosa “Xizi” and R. rugosa “Zi long wo chi” were lower, and the expressions of the three less thorn varieties of R. rugosa “Zizhi”, R. rugosa “Tian e huang” and R. rugosa “Tang fen” were higher. According to the above results, it was speculated that RrTTG1 is involved in the synthesis of R. rugosa trichomes and belongs to the negative regulation mechanism.展开更多
Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindr...Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindrica) and bottle gourd (Lagenaria siceraria var. hispida) was observed by an X-ray microanalyzer coupled with an environmental scanning electron microscope. The elements that presented in the surface of three or four leaves of the individual species were detected and mapped by the X-ray microanalyzer. In leaves of cucumber, pumpkin, and melon, high accumulation of silicon was detected in cells surrounding the bases of the trichome hair and the hair itself deposited calcium. On the other hand, in sponge gourd and bottle gourd, high accumulation of silicon was detected only in the hair. In watermelon leaves, silicon deposited both in the hair and in cells surrounding the bases of the hair. Thus, horticultural Cucurbitaceae plants have interspecific variation in the pattern of silicon deposition in leaf trichomes.展开更多
Leaf traits, structure and water status of Conocarpus lancifolius, a Combretaceae were investigated under semi-arid conditions. The leaf traits examined included leaf area and thickness, stomatal distribution, sclerop...Leaf traits, structure and water status of Conocarpus lancifolius, a Combretaceae were investigated under semi-arid conditions. The leaf traits examined included leaf area and thickness, stomatal distribution, sclerophylly, succulence and relative water content. Additionally, the types of secretory structures, histochemistry of trichomes, and chemical nature of the cuticlular waxes were evaluated. Leaves showed xerophytic characteristics including a high degree of sclerophylly, thick cuticle and outer epidermal cell wall, low relative water content and high trichome density on younger leaves. The species has two types of trichomes;a secretory, short-stalked capitate trichome and a non-secretory trichome with a bulbous base and a pointed tip. The leaves also have a pair of extrafloral nectaries on both sides of the distal end of the petiole, 3-4 pairs near the leaf apex and two secretory ducts or cavities on mature leaves that secreted polysaccharides, epicuticlar waxes and polyphenols. Compared to young leaves mature leaves had almost 3 times total cuticular wax deposit or load. The most abundant fatty acids were palmitic, stearic, nondecanoic, behenic and arachidic acids. The leaf traits and structures are discussed in relation to semi-arid habitat.展开更多
This study aims to investigate the morphology and ultrastructure characters of pollen grains and trichomes in order to evaluate their systematic value of these characters in specific and intraspecific separation of th...This study aims to investigate the morphology and ultrastructure characters of pollen grains and trichomes in order to evaluate their systematic value of these characters in specific and intraspecific separation of the Saudi Arabian Plectranthus species. A critical systematic revision of 7 species of Plectranthus (Lamiaceae) in Saudi Arabia was conducted by means of numerical analyses based on thirty-one morphological characters, including vegetative parts, seeds, pollen grains, and trichomes. Macro- and micro-morphological characters, including seed and pollen shape, size, coat sculpture, trichome structure, were studied. It reveals the presence of seven species, including two endemic species. The pollen grains were zonocolpate, hexacolpate, prolate to subprolate. Three types of exine ornamentation were recognized. Also, two trichome types could be distinguished and classified into glandular and non-glandular. The glandular trichomes could be distinguished as peltate, capitate and digitiform. The eglandular trichomes were single, uniseriate, multicellular. Pollen and trichome characters were found to be valuable, while seed characters presented only minor taxonomic value. On the basis of UPGMA clustering analysis four branches and clusters were distinguished. The results offer useful data for evaluating the taxonomy of Plectranthus both at subgeneric and sectional levels. Our results indicated some degree of similarity among the species of subgenus Burnatastrum. Plectranthus arabicus is considered as a separate group and may be treated as separate subgenus. Furthermore, the endemic species Plectranthus asirensis and Plectranthus hijazensis constitute a monophyletic group and there are close relationships between this group and Plectranthus tenuiflorus. A key for the identification of the investigated taxa based on studied characters is provided.展开更多
In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total...In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatileorganic compounds (96.7%–98.9%) were identified;4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones,1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the maingroup, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane(44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in thetwo fractions of EOs, representing 98.8% and 97.2% of the total oil composition, respectively. The principal componentswere hexadecanoic acid (34.6%), 6-methyl-5-hepten-2-one (18.3%), decanal (15.0%), 6,10,14-trimethyl-2-pentadecanone (13.2%), and n-pentacosane (13%). Micromorphological details of the leaf and stem epidermisusing light microscopy revealed polygonal cells with sinuous walls in the adaxial and abaxial leaf surfaces andnearly rectangular and long ones with linear and thick walls for the stem epidermis. The stomata complexes wereanisocytic in the leaf epidermis and mainly anisocytic and rarely paracytic in the stem epidermis. Non-glandulartrichomes were unbranched and long with an acute apex or short with a convex apex. The glandular ones wereidentified for the first time in this species. They were short-stalked with a large secretory head. The highest stomatalindex (17.02%) was recorded in the abaxial leaf surface. The identification of headspace volatiles and essentialoil compounds can be used to characterize this species, and the various epidermis micromorphologicalfeatures are very useful for biosystematics taxonomic studies within Brassicaceae.展开更多
Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and ...Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua.展开更多
Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation ...Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation (i.e., initiation and elongation) in rice remain largely unclear. Here, we report an AP2/ERF transcription factor, Hairy Leaf 6 (HL6), which controls trichome formation in rice. Functional analyses revealed that HL6 transcriptionally regulates trichome elongation in rice, which is dependent on functional OsWOX3B, a homeodomain-containing protein that acts as a key regulator in trichome initiation. Biochemical and molecular genetic analyses demonstrated that HL6 physically interacts with OsWOX3B, and both of them regulate the expression of some auxin-related genes during trichome formation, in which OsWOX3B likely enhances the binding ability of HL6 with one of its direct target gene, OsYUCCA5. Popu- lation genetic analysis indicated that HL6 was under negative selection during rice domestication. Taken together, our findings provide new insights into the molecular regulatory network of trichome formation in rice.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA2004010306)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)Science and Technology Program of Xizang Autonomous Region(XZ202001ZY0003G).
文摘The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.
基金the National Natural Science Foundation of China(31671668)Natural Science Foundation of Fujian Province(2021J01076)+1 种基金International Atomic Energy Agency Coordinated Research Project(D23031-22287)Key Program of Science and Technology in Fujian Province(2020NZ08016).
文摘Plant trichomes are a specialized cellular tissue that functions in resistance to biotic and abiotic stresses.In rice,three transcription-factor genes:OsWOX3B,HL6,and OsSPL10,have been found to control trichome development.Although studies have shown interactions between the three genes,their full relationship in trichome development is unclear.We found that the expression levels of OsWOX3B and HL6 were both reduced in OsSPL10-knockout plants but increased in OsSPL10-overexpression plants,suggesting that OsSPL10 positively regulates their expression.Physical interaction between OsSPL10 and OsWOX3B was found both in vivo and in vitro and attenuated their abilities to bind to the promoter of HL6 to activate its transcription.This mechanism may regulate trichome length by adjusting the expression of HL6.A rice gene network regulating trichome development is proposed.
基金supported by grants from the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxm0539,cstc2015jcyjA80008)the National College Students Innovation and Entrepreneurship Training Program from the Ministry of Education,China(202110635082)the National Natural Science Foundation of China(32171964,31171178).
文摘The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.However,the development of rice trichomes remains poorly understood.In this study,we conducted ethylmethane sulfonate(EMS)-mediated mutagenesis on the wild-type(WT)indica rice‘Xida 1B’.Phenotypic analysis led to the screening of a mutant that is defective in trichome development,designated lhl1(less hairy leaf 1).We performed map-based cloning and localized the mutated gene to the 70-kb interval between the molecular markers V-9 and V-10 on chromosome 2.The locus LOC_Os02g25230 was identified as the candidate gene by sequencing.We constructed RNA interference(LHL1-RNAi)and overexpression lines(LHL1-OE)to verity the candidate gene.The leaves of the LHL1-RNAi lines showed the same trichome developmental defects as the lhl1 mutant,whereas the trichome morphology on the leaf surface of the LHL1-OE lines was similar to that of the WT,although the number of trichomes was significantly higher.Quantitative real-time PCR(RT-qPCR)analysis revealed that the expression levels of auxin-related genes and positive regulators of trichome development in the lhl1 mutant were down-regulated compared with the WT.Hormone response analysis revealed that LHL1 expression was affected by auxin.The results indicate that the influence of LHL1 on trichome development in rice leaves may be associated with an auxin pathway.
文摘Micromorphology of glandular hairs on the leaves of Salvia officinalis L. and Salvia triloba L. was investigated by light microscopy. We noticed similiarity and variation between the two species regarding morphology of glandular trichomes. Two main types of glandular trichomes were identified on both species: peltate and capitate. Peltate trichomes consisted of a basal cell, one stalk cell and a large multisecretory head in S. officinalis L. In S. triloba L. peltate trichomes posses a basal cell, a short unicellular stalk, and a large secretory head with 8 secretory cells. In Salvia officinalis L., four types of capitate trichomes have been distinguished. Five types of capitate trichomes have been found in Salvia triloba L. The fifth type of capitate trichome, called digitiform trichome was found in S. triloba L. This determined interspecific diversity between the two Salvia species.
基金Key Science and Technology Program of Guizhou TobaccoResearch and Development of Characteristic Tobacco in Guizhou(2007-04)~~
文摘[Objective] The aim was to study the effect of climate and soil on the content of surface trichome exudates from fresh flue-cured leaves. [Method] The experiment was conducted in 2009 in Longgang, Weining and Tianzhu of Guizhou Province with flue-cured tobacco variety Yun 85. Mature tobacco leaves were taken from lower, middle and upper plant positions respectively and major cuticular com-ponents of the leaves were extracted with methylene chloride and their chemical compositions were analyzed with GC-MS. [Result] The result showed that there was large difference among trichome exudates of leaves grown under different climatic conditions. The leaf trichome exudates from Tianzhu were quite higher than those from Weining and Longgang, and trichome exudates difference between Tianzhu and Longgang was significant. Soil conditions had considerable effect on the content of tobacco leaf surface trichome exudates, leaf from Longgang soil had highest con-tent, fol owed by Tianzhu soil leaf, Weining soil leaf had lowest content. Under vari-ous climatic conditions, the contents of leaf trichome exudates of same soil were in-consistent, indicating the presence of certain climate and soil factor interaction; The contents of leaf trichome exudates from four cultivars in Longgang showed large difference, Nanjiang 3 was the lowest, fol owed by K326, Guiyan 201 was high, and Yunyan85 the highest. The content of leaf trichome exudates of Yunyan85 was more than two times of that of Nanjiang 3. [Conclusion] The Effect of climate factor on the content of leaf trichome exudates was greater than that of cultivar, which was then larger than soil condition.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (NSFC Grant 90717003 to L-J Qu).
文摘1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.
基金partially funded by the Greek General Secretariat of Research and Technologythe Greek Scholarship FoundationThe ’Empirikion’ Foundation
文摘As superficial structures,non-glandular trichomes,protect plant organs against multiple biotic and abiotic stresses.The protective and defensive roles of these epidermal appendages are crucial to developing organs and can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds,primarily fl avonoids.Both the formation of trichomes and the accumulation of phenolics are interrelated at the molecular level.During the early stages of development,non-glandular trichomes show strong morphological similarities to glandular ones such as the balloon-like apical cells with numerous phenolics.At later developmental stages,and during secondary wall thickening,phenolics are transferred to the cell walls of the trichomes.Due to the diff use deposition of phenolics in the cell walls,trichomes provide protection against UV-B radiation by behaving as optical fi lters,screening out wavelengths that could damage sensitive tissues.Protection from strong visible radiation is also aff orded by increased surface light refl ectance.Moreover,the mixtures of trichome phenolics represent a superfi-cial chemical barrier that provides protection against biotic stress factors such as herbivores and pathogens.Although the cells of some trichomes die at maturity,they can modulate their quantitative and qualitative characteristics during development,depending on the prevailing conditions of the external biotic or abiotic environment.In fact,the structure and chemical constituents of trichomes may change due to the particular light regime,herbivore damage,wounding,water stress,salinity and the presence of heavy metals.Hence,trichomes represent dynamic protective structures that may greatly aff ect the outcome of many plant–environment interactions.
基金supported by the National Natural Science Foundation of China (31471539)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project, China (No.10)
文摘Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could be a candidate gene for the T_1 locus.The ortholog of GhHD-1A in the hairless accession Gossypium barbadense cv.Hai7124 was interrupted by a long terminal repeat(LTR)retrotransposon,while GhHD-1A worked well in the hairy accession Gossypium hirsutum acc.T586.Sequence and phylogenetic analysis showed that GhHD-1A belonged to the HD-Zip IV gene family,which mainly regulated epidermis hair development in plants.Silencing of GhHD-1A and its homoeologs GhHD-1D in allotetraploid T586and Hai7124 could significantly reduce the density of leaf hairs and affect the expression levels of other genes related to leaf trichome formation.Further analysis found that GhHD-1A mainly regulated trichome initiation on the upper epidermal hairs of leaves in cotton,while the up-regulated expression of GhHD-1A in different organs/tissues also altered epidermal trichome development.This study not only helps to unravel the important roles of GhHD-1A in regulating trichome initiation in cotton,but also provides a reference for exploring the different forms of trichome development in plants.
基金the Research Project Supported by Shanxi Scholarship Council of China(2021-066)the National Natural Science Foundation of China(31601751)+2 种基金the Key Research and Development Plan of Shanxi Province,China(201903D221063)the Fundamental Research Program of Shanxi Province,China(20210302123412)the Science and Technology Innovation Project of Shanxi Agricultural University,China(2016ZZ02).
文摘Trichomes are specialized structures developed from epidermal cells and can protect plants against biotic and abiotic stresses.Trichomes cover carrots during the generative phase.However,the morphology of the carrot trichomes and candidate genes controlling the formation of trichomes are still unclear.This study found that carrot trichomes were nonglandular and unbranched hairs distributed on the stem,leaf,petiole,pedicel,and seed of carrot.Resequencing analysis of a trichome mutant with sparse and short trichomes(sst)and a wild type(wt)with long and dense trichomes on carrot stems was conducted.A total of 15396 genes containing nonsynonymous mutations in sst were obtained,including 42 trichomerelated genes.We also analyzed the transcriptome of the trichomes on secondary branches when these secondary branches were 10 cm long between wt and sst and obtained 6576 differentially expressed genes(DEGs),including 24 trichome-related genes.qRT-PCR validation exhibited three significantly up-regulated DEGs,20 significantly downregulated,and one with no difference.We considered both the resequencing and transcriptome sequencing analyses and found that 12 trichome-related genes that were grouped into five transcription factor families containing nonsynonymous mutations and significantly down-regulated in sst.Therefore,these genes are potentially promising candidate genes whose nonsynonymous mutations and down-regulation may result in scarce and short trichomes mutation on carrot stems in sst.
基金supported by Gorgan University of Agricultural Sciences and Natural Resource [Grant No.8918113107]
文摘Pollen and trichome morphology of the genus Betula were evaluated from three main habitats in Iran using light and electron microscopy.Pollen types were identical and tri-porate;however,in terms of quantitative data,some differences were observed in exine(outside)wall thickness,length of polar axis and length of equatorial axis,possibly due to the environment.Pollen alone is insufficient to separate species of Iranian birch.Investigation of the trichome trait(small hairs or other outgrowths)revealed that birch species in Iran belong to:(1)Betula litwinowii Doluch.according to the low density of trichomes on the adaxial surface of the leaves and the lack of trichomes on the abaxial surface and many trichomes on the petioles;(2)Betula pendula Roth.due to the absence of trichomes on the adaxial surface and the low density of trichomes on the abaxial surface;and,(3)in the adaxial and abaxial surfaces of leaves and petioles,the trichomes had different types of pilose(long,soft hairs),and this strengthens the possibility of a different species or more likely a hybrid of B.pendula.
基金supported by grants from the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province,China(U1812401)the Talent Project of Guizhou Province,China(20164016)。
文摘Rosa sterilis S.D.Shi is an important economic tree in China that produces fruits with high nutritional and medicinal value.Many of R.sterills’organs are covered with different types of trichomes or prickles that directly affect fruit appearance and plant management.This study used RNA sequencing technology to analyze the transcriptomes of two parts of the inflorescence branch,namely inflorescence stems with flagellated trichomes and pedicels with both flagellated and glandular trichomes.Comparative transcriptomic analysis showed that many transcription factors(TFs)are potentially involved in the formation and development of trichomes.The accumulation of RsETC1,a TF of the R3-MYB family,was significantly higher in inflorescence stems than in pedicels;quantitative reverse transcription PCR(qRTPCR)verified that its expression was significantly higher in inflorescence stems than in pedicels during the first three development stages,indicating its inhibitory action on the initiation of glandular trichomes in R.sterilis.The mRNA level of RsETC1 accumulated to significantly higher levels in trichomeless tissues than in tissues with trichromes,suggesting that this gene may inhibit the formation of trichomes in R.sterilis.Over-expression of RsETC1 in Arabidopsis resulted in glabrous phenotypes,and the expression of trichome-related endogenous genes,except for TTG1,was markedly reduced.In addition,the contents of the phytohormones jasmonic acid(JA),gibberellin A3(GA_(3)),and cytokinins(CKs)in pedicels were significantly higher than those in inflorescence stems,and the expression patterns of the genes related to hormone biosynthesis and signal transduction presented consistent responses,suggesting that the transduction of these hormones might be crucial for trichome initiation and development.These data provide a new perspective for revealing the molecular mechanism of trichome formation in R.sterilis.
基金This work was supported by the Natural Science Foundation of China(Grant No.31260317).
文摘Trichomes are specialized epidermal cells that plav multiple roles in plant development.However,knowledge about the molecular mechanism of trichome development in rice is limited.In this study,a hairy leaf locus HL6SWWR of rice variety Suwangwanger(SWWR)was identified by map-based cloning.Transgenic complementation and knock-out mutation demonstrated that HL6SWWR regulated trichomes on leaves and expression levels of HL6SWWR affected trichome elongation.Transgenic experiments of PROswwr:HL6nipand PROnip:HL6swwr indicated that the promoter and coding sequences of HL6swwr were indispensable for trichome regulation.Sequencing alignment of the promoter and coding regions of HL6 in 22 varieties showed that some c/s-binding elements in the promoter region may be related to trichome development,while no decisive variation was found in the coding sequence.Furthermore,RNA-sequencing analysis revealed that 1415 differential expression genes(DEGs)were detected in hl6SWWR mutant vs wild type and that 1010 DEGs were found in HL6SWWR complementary transgenic line vs wild type.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis showed that most of the DEGs were involved in metabolite pathway,secondary metabolite biosynthesis,plant pathogen interaction and phytohormone signal transduction in both the two groups.The results indicated that these enhanced pathways are critical during trichome development in rice.Taken together,our results provided new views into the regulatory mechanism of trichome formation in rice.
基金supported financially by the National Science Fund for Distinguished Young Scholars(31525005)the NSFC-Yunnan Joint Fund (U1202263)+1 种基金the National Basic Research Program of China (973 Program) on Biological Control of Key Crop Pathogenic Nematodes (2013CB127505)the "Hundred Talents Program" of the Chinese Academy of Sciences (awarded to S.-H. Li)
文摘Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana(Onagraceae) were collected with laser microdissection and analyzed by gas chromatography-mass spectrometry. The volatile compound 4-hydroxy-4-methylpentan-2-one(1) was identified. We found that compound 1 displays antimicrobial, insecticidal, and phytotoxic activities. These results suggest that compound 1 might function as a defensive compound in the capitate glandular trichomes of O. glazioviana against pathogens, insect herbivores, and presumably competitive plants as well.
文摘The TTG1 transcription factor plays an important role in the formation of plant trichomes. Based on the R. rugosa transcriptome data, this study cloned a R. rugosa TTG1 gene, named RrTTG1, and carried out bioinformatics analysis and fluorescence quantitative analysis to explore the relationship between TTG1 gene and R. rugosa trichomes formation, in order to lay a good foundation to cultivate a thornless plant in the family Rosaceae. In this experiment, six hybrid cultivars of R. rugosa “Zizhi”, R. rugosa “Xizi”, R. rugosa “Tang fen”, R. rugosa “Hun chun”, R. rugosa “Zi long wo chi” and R. rugosa “Tian e huang” were used as experimental materials, and the cDNA full length of this gene was obtained by RT-PCR and RACE, and the full length of the cDNA was 1348 bp. After bioinformatics analysis, it is predicted that its molecular formula is C1723H2661N465O529S12, the molecular weight is 38.71 KB, and the isoelectric point is 5.00. Its instability index is 54.30, which belongs to unstable protein;and its hydrophilic amino acid distribution is relatively uniform, and the amount is larger than hydrophobic amino acid, which belongs to hydrophilic protein. Phylogenetic tree was constructed for the TTG1 gene. Evolutionary analysis indicated that RrTTG1 is closely related to the TTG1 protein of Rosaceae family, and has a close relationship with other families. The expression analysis showed that the expression of RrTTG1 protein was negatively correlated with the trichome content of R. rugosa stems and leaves. The expression levels of the three spiny varieties of R. rugosa “Hun chun”, R. rugosa “Xizi” and R. rugosa “Zi long wo chi” were lower, and the expressions of the three less thorn varieties of R. rugosa “Zizhi”, R. rugosa “Tian e huang” and R. rugosa “Tang fen” were higher. According to the above results, it was speculated that RrTTG1 is involved in the synthesis of R. rugosa trichomes and belongs to the negative regulation mechanism.
文摘Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindrica) and bottle gourd (Lagenaria siceraria var. hispida) was observed by an X-ray microanalyzer coupled with an environmental scanning electron microscope. The elements that presented in the surface of three or four leaves of the individual species were detected and mapped by the X-ray microanalyzer. In leaves of cucumber, pumpkin, and melon, high accumulation of silicon was detected in cells surrounding the bases of the trichome hair and the hair itself deposited calcium. On the other hand, in sponge gourd and bottle gourd, high accumulation of silicon was detected only in the hair. In watermelon leaves, silicon deposited both in the hair and in cells surrounding the bases of the hair. Thus, horticultural Cucurbitaceae plants have interspecific variation in the pattern of silicon deposition in leaf trichomes.
文摘Leaf traits, structure and water status of Conocarpus lancifolius, a Combretaceae were investigated under semi-arid conditions. The leaf traits examined included leaf area and thickness, stomatal distribution, sclerophylly, succulence and relative water content. Additionally, the types of secretory structures, histochemistry of trichomes, and chemical nature of the cuticlular waxes were evaluated. Leaves showed xerophytic characteristics including a high degree of sclerophylly, thick cuticle and outer epidermal cell wall, low relative water content and high trichome density on younger leaves. The species has two types of trichomes;a secretory, short-stalked capitate trichome and a non-secretory trichome with a bulbous base and a pointed tip. The leaves also have a pair of extrafloral nectaries on both sides of the distal end of the petiole, 3-4 pairs near the leaf apex and two secretory ducts or cavities on mature leaves that secreted polysaccharides, epicuticlar waxes and polyphenols. Compared to young leaves mature leaves had almost 3 times total cuticular wax deposit or load. The most abundant fatty acids were palmitic, stearic, nondecanoic, behenic and arachidic acids. The leaf traits and structures are discussed in relation to semi-arid habitat.
文摘This study aims to investigate the morphology and ultrastructure characters of pollen grains and trichomes in order to evaluate their systematic value of these characters in specific and intraspecific separation of the Saudi Arabian Plectranthus species. A critical systematic revision of 7 species of Plectranthus (Lamiaceae) in Saudi Arabia was conducted by means of numerical analyses based on thirty-one morphological characters, including vegetative parts, seeds, pollen grains, and trichomes. Macro- and micro-morphological characters, including seed and pollen shape, size, coat sculpture, trichome structure, were studied. It reveals the presence of seven species, including two endemic species. The pollen grains were zonocolpate, hexacolpate, prolate to subprolate. Three types of exine ornamentation were recognized. Also, two trichome types could be distinguished and classified into glandular and non-glandular. The glandular trichomes could be distinguished as peltate, capitate and digitiform. The eglandular trichomes were single, uniseriate, multicellular. Pollen and trichome characters were found to be valuable, while seed characters presented only minor taxonomic value. On the basis of UPGMA clustering analysis four branches and clusters were distinguished. The results offer useful data for evaluating the taxonomy of Plectranthus both at subgeneric and sectional levels. Our results indicated some degree of similarity among the species of subgenus Burnatastrum. Plectranthus arabicus is considered as a separate group and may be treated as separate subgenus. Furthermore, the endemic species Plectranthus asirensis and Plectranthus hijazensis constitute a monophyletic group and there are close relationships between this group and Plectranthus tenuiflorus. A key for the identification of the investigated taxa based on studied characters is provided.
文摘In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatileorganic compounds (96.7%–98.9%) were identified;4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones,1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the maingroup, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane(44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in thetwo fractions of EOs, representing 98.8% and 97.2% of the total oil composition, respectively. The principal componentswere hexadecanoic acid (34.6%), 6-methyl-5-hepten-2-one (18.3%), decanal (15.0%), 6,10,14-trimethyl-2-pentadecanone (13.2%), and n-pentacosane (13%). Micromorphological details of the leaf and stem epidermisusing light microscopy revealed polygonal cells with sinuous walls in the adaxial and abaxial leaf surfaces andnearly rectangular and long ones with linear and thick walls for the stem epidermis. The stomata complexes wereanisocytic in the leaf epidermis and mainly anisocytic and rarely paracytic in the stem epidermis. Non-glandulartrichomes were unbranched and long with an acute apex or short with a convex apex. The glandular ones wereidentified for the first time in this species. They were short-stalked with a large secretory head. The highest stomatalindex (17.02%) was recorded in the abaxial leaf surface. The identification of headspace volatiles and essentialoil compounds can be used to characterize this species, and the various epidermis micromorphologicalfeatures are very useful for biosystematics taxonomic studies within Brassicaceae.
文摘Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua.
文摘Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation (i.e., initiation and elongation) in rice remain largely unclear. Here, we report an AP2/ERF transcription factor, Hairy Leaf 6 (HL6), which controls trichome formation in rice. Functional analyses revealed that HL6 transcriptionally regulates trichome elongation in rice, which is dependent on functional OsWOX3B, a homeodomain-containing protein that acts as a key regulator in trichome initiation. Biochemical and molecular genetic analyses demonstrated that HL6 physically interacts with OsWOX3B, and both of them regulate the expression of some auxin-related genes during trichome formation, in which OsWOX3B likely enhances the binding ability of HL6 with one of its direct target gene, OsYUCCA5. Popu- lation genetic analysis indicated that HL6 was under negative selection during rice domestication. Taken together, our findings provide new insights into the molecular regulatory network of trichome formation in rice.