Let(∑,g)be a compact Riemannian surface,pj∈∑,βj>-1,forj=1,..i,m.Denoteβ=min{0,β1……Bm}.Let H∈C^(0)(∑)be a positivefunction and h(x)=H(x)(dg(x,pj))^(2βj),where dg(x,pj)denotes the geodesic distance between...Let(∑,g)be a compact Riemannian surface,pj∈∑,βj>-1,forj=1,..i,m.Denoteβ=min{0,β1……Bm}.Let H∈C^(0)(∑)be a positivefunction and h(x)=H(x)(dg(x,pj))^(2βj),where dg(x,pj)denotes the geodesic distance between x and p;for each j=1,...,m.In this paper,using a method of blow-up analysis,we prove that the functional J(u)=1/2∫∑|ΔgU|^(2)dV_(g)+8π(1+β)1/volg(∑)∫∑udvg-8π(1+β)log∫_(∑)he^(U)dv_(g)is bounded from below on the Sobolev space w^(1,2)(g).展开更多
In this paper,we obtained the extremal function for a weighted singular Trudinger-Moser inequality by blow-up analysis in the Euclidean space R^(2).This extends recent results of Hou(J.Inequal.Appl.,2018)and similar r...In this paper,we obtained the extremal function for a weighted singular Trudinger-Moser inequality by blow-up analysis in the Euclidean space R^(2).This extends recent results of Hou(J.Inequal.Appl.,2018)and similar result was proved by Zhu(Sci.China Math.,2021).展开更多
Let W^(1,n)(R^(n))be the standard Sobolev space.For any T>0 and p>n>2,we denote■Define a norm in W^(1,n)(R^(n))by■where 0≤α<λ_(n,p).Using a rearrangement argument and blow-up analysis,we will prove■c...Let W^(1,n)(R^(n))be the standard Sobolev space.For any T>0 and p>n>2,we denote■Define a norm in W^(1,n)(R^(n))by■where 0≤α<λ_(n,p).Using a rearrangement argument and blow-up analysis,we will prove■can be attained by some function u_(0)∈W^(1,n)(R^(n))∩C^(1)(R^(n))with ||u_(0)||_(n,p)=1,here a_(n)=n■_(n-1)^(1/n-1) and ■_(n-1) is the measure of the unit sphere in R^(n).展开更多
Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequali...Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequality.In particular,the supremum u∈,H,^sup||u|,H≤|1∫B1^e4πu2dx can be attained by some function u0∈H with||u0|H=1|This was improved by the author and Zhu[2]to a version involving the first eigenvalue of the Hardy-Laplacian operator-△-1/(1-|x|^2)^2.In this note,the results of[1,2]will be reproved by the method of energy estimate,which was recently developed by Malchiodi-Martinazzi[3]and Mancini-Martinazzi[4].展开更多
In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Precisely, let(Σ, D) be such a surface∑with divi...In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Precisely, let(Σ, D) be such a surface∑with divisor D =Σ_(i=1)~mβ_(ipi), where β_i >-1 and p_i ∈Σ for i = 1,..., m, and g be a metric representing D.Denote b_0 = 4π(1 + min_(1≤i≤mβ_i). Suppose ψ : Σ→ R is a continuous function with ∫_Σψdv_g ≠0 and define■Then for any α∈ [0, λ_1^(**)(Σ, g)), we have■When b > b0, the integrals■are still finite, but the supremum is infinity. Moreover, we prove that the extremal function for the above inequality exists.展开更多
The classical critical Trudinger-Moser inequality in R^(2)under the constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1 was established through the technique of blow-up analysis or the rearrangement-free argument:for anyτ&g...The classical critical Trudinger-Moser inequality in R^(2)under the constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1 was established through the technique of blow-up analysis or the rearrangement-free argument:for anyτ>0,it holds that sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))and 4πis sharp.However,if we consider the less restrictive constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1,where V(x)is nonnegative and vanishes on an open set in R^(2),it is unknown whether the sharp constant of the Trudinger-Moser inequality is still 4π.The loss of a positive lower bound of the potential V(x)makes this problem become fairly nontrivial.The main purpose of this paper is twofold.We will first establish the Trudinger-Moser inequality sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))when V is nonnegative and vanishes on an open set in R^(2).As an application,we also prove the existence of ground state solutions to the following Sciridinger equations with critical exponeitial growth:-Δu+V(x)u=f u)in R^(2),(0.1)where V(x)≥0 and vanishes on an open set of R^(2)and f has critical exponential growth.Having a positive constant lower bound for the potential V(x)(e.g.,the Rabinowitz type potential)has been the standard assumption when one deals with the existence of solutions to the above Schrodinger equations when the nonlinear term has the exponential growth.Our existence result seems to be the first one without this standard assumption.展开更多
Let IB be the unit disc in R^2,H be the completion of C∞0(B)under the norm||u||H=(∫B|▽u|^2dx-∫Bu^2/(1-|x^2|^2dx)^1/2,■u∈C∞0(B).Using blow-up analysis,we prove that for anyγ≤4π,the supremum sup u∈H,||u||1,h...Let IB be the unit disc in R^2,H be the completion of C∞0(B)under the norm||u||H=(∫B|▽u|^2dx-∫Bu^2/(1-|x^2|^2dx)^1/2,■u∈C∞0(B).Using blow-up analysis,we prove that for anyγ≤4π,the supremum sup u∈H,||u||1,h≤1∫Beγu^2dx can be attained by some function u0∈H with||u0||1,h=1,where is a decreasingly nonnegative,radially symmetric function,and satisfies a coercive cond让ion.Namely there exists a constantδ>0 satisfying||u||21,h=||u||2H-∫Bhu^2dx≥δ||u||H^2,■u∈H.This extends earlier results of Wang-Ye[1]and Yang-Zhu[2].展开更多
In this paper,using the method of blow-up analysis,we obtained a Trudinger–Moser inequality involving L^(p)-norm on a closed Riemann surface and proved the existence of an extremal function for the corresponding Trud...In this paper,using the method of blow-up analysis,we obtained a Trudinger–Moser inequality involving L^(p)-norm on a closed Riemann surface and proved the existence of an extremal function for the corresponding Trudinger–Moser functional.展开更多
In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space H^n:u∈W^1,n(H^n),^sup,fH^n| H^nu|^ndμ≤1∫H^n ea|u|n/n-1-∑^n-2a^k|u|nk/n-1 k=0 k!/ρβ dμ〈∞ a/an+β/n≤1...In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space H^n:u∈W^1,n(H^n),^sup,fH^n| H^nu|^ndμ≤1∫H^n ea|u|n/n-1-∑^n-2a^k|u|nk/n-1 k=0 k!/ρβ dμ〈∞ a/an+β/n≤1,where α 〉 0,β E [0,n), ρ and dμ are the distance function and volume element of H^n respectively.展开更多
Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
Poverty and income inequality are problems faced by many countries including China.Since the implementation of Targeted Poverty Alleviation(TPA),absolute poverty has been eradicated,meanwhile,Chinese rural residents...Poverty and income inequality are problems faced by many countries including China.Since the implementation of Targeted Poverty Alleviation(TPA),absolute poverty has been eradicated,meanwhile,Chinese rural residents'income and inequality have experienced unprecedented new dynamics,but still,very few studies have focused on them.Hence,we attempt to examine the new trends in Chinese farmers'income inequality and to understand its causes during this period.We observe that China's urban-rural income ratio has been shrinking and the urban-rural inequality has been decreasing from 2014 to 2021.The reduction in the Theil index indicates a decrease in the regional inequality of farmers'income as well,and the decline in inter-regional inequality among eight economic zones contributes about 80%to increased equality.These new trends are caused by the fact that,with the TPA,the incomes of rural residents especially that in destitute areas,grew faster than that of urban residents and farmers in prosperous areas.The higher share of non-agricultural industry and agricultural mechanization level have significant positive impact on regional equality of farmers'income,while urban-rural dual structure has significant negative inhibitory effects.The lowest farmers'income and the highest inequality in the Northwest,and the slowest growth in the Northeast deserve more attention in rural Revitalization.From these findings,we propose four policy implications that would be applied to improve Chinese farmers'income equality,govern relative poverty,and achieve common prosperity in the post-poverty era.展开更多
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th...Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.展开更多
Clustering a social network is a process of grouping social actors into clusters where intra-cluster similarities among actors are higher than inter-cluster similarities. Clustering approaches, i.e. , k-medoids or hie...Clustering a social network is a process of grouping social actors into clusters where intra-cluster similarities among actors are higher than inter-cluster similarities. Clustering approaches, i.e. , k-medoids or hierarchical, use the distance function to measure the dissimilarities among actors. These distance functions need to fulfill various properties, including the triangle inequality (TI). However, in some cases, the triangle inequality might be violated, impacting the quality of the resulting clusters. With experiments, this paper explains how TI violates while performing traditional clustering techniques: k-medoids, hierarchical, DENGRAPH, and spectral clustering on social networks and how the violation of TI affects the quality of the resulting clusters.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
Motivated by a recent work of Wang-Yang[19],we study the compactness of extremals[ug]for singular Hardy-Trudinger-Moser inequalities due to Hou[24].In particular,by the method of blow-up analysis,we conclude that,up t...Motivated by a recent work of Wang-Yang[19],we study the compactness of extremals[ug]for singular Hardy-Trudinger-Moser inequalities due to Hou[24].In particular,by the method of blow-up analysis,we conclude that,up to a subsequence,ug converges to an extremal in some sense asβtends to zero.展开更多
In this paper, we use a geometric identity in the n-dimensional Euclidean space En and give the further improveme nt of Klamkin inequality in the space En.
基金the National Science Foundation of China(GrantNo.11401575).
文摘Let(∑,g)be a compact Riemannian surface,pj∈∑,βj>-1,forj=1,..i,m.Denoteβ=min{0,β1……Bm}.Let H∈C^(0)(∑)be a positivefunction and h(x)=H(x)(dg(x,pj))^(2βj),where dg(x,pj)denotes the geodesic distance between x and p;for each j=1,...,m.In this paper,using a method of blow-up analysis,we prove that the functional J(u)=1/2∫∑|ΔgU|^(2)dV_(g)+8π(1+β)1/volg(∑)∫∑udvg-8π(1+β)log∫_(∑)he^(U)dv_(g)is bounded from below on the Sobolev space w^(1,2)(g).
文摘In this paper,we obtained the extremal function for a weighted singular Trudinger-Moser inequality by blow-up analysis in the Euclidean space R^(2).This extends recent results of Hou(J.Inequal.Appl.,2018)and similar result was proved by Zhu(Sci.China Math.,2021).
基金supported by National Science Foundation of China(Grant No.12201234)Natural Science Foundation of Anhui Province of China(Grant No.2008085MA07)the Natural Science Foundation of the Education Department of Anhui Province(Grant No.KJ2020A1198).
文摘Let W^(1,n)(R^(n))be the standard Sobolev space.For any T>0 and p>n>2,we denote■Define a norm in W^(1,n)(R^(n))by■where 0≤α<λ_(n,p).Using a rearrangement argument and blow-up analysis,we will prove■can be attained by some function u_(0)∈W^(1,n)(R^(n))∩C^(1)(R^(n))with ||u_(0)||_(n,p)=1,here a_(n)=n■_(n-1)^(1/n-1) and ■_(n-1) is the measure of the unit sphere in R^(n).
基金supported by the National Science Foundation of China(Grant Nos.11471014 and 11761131002).
文摘Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequality.In particular,the supremum u∈,H,^sup||u|,H≤|1∫B1^e4πu2dx can be attained by some function u0∈H with||u0|H=1|This was improved by the author and Zhu[2]to a version involving the first eigenvalue of the Hardy-Laplacian operator-△-1/(1-|x|^2)^2.In this note,the results of[1,2]will be reproved by the method of energy estimate,which was recently developed by Malchiodi-Martinazzi[3]and Mancini-Martinazzi[4].
基金supported by National Natural Science Foundation of China (Grant No. 11401575)
文摘In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Precisely, let(Σ, D) be such a surface∑with divisor D =Σ_(i=1)~mβ_(ipi), where β_i >-1 and p_i ∈Σ for i = 1,..., m, and g be a metric representing D.Denote b_0 = 4π(1 + min_(1≤i≤mβ_i). Suppose ψ : Σ→ R is a continuous function with ∫_Σψdv_g ≠0 and define■Then for any α∈ [0, λ_1^(**)(Σ, g)), we have■When b > b0, the integrals■are still finite, but the supremum is infinity. Moreover, we prove that the extremal function for the above inequality exists.
基金supported by National Natural Science Foundation of China(Grant No.11901031)supported by a Simons grant from the Simons Foundation+1 种基金supported by National Natural Science Foundation of China(Grant Nos.12071185 and 12061010)Outstanding Young Foundation of Jiangsu Province(Grant No.BK20200042)。
文摘The classical critical Trudinger-Moser inequality in R^(2)under the constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1 was established through the technique of blow-up analysis or the rearrangement-free argument:for anyτ>0,it holds that sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))and 4πis sharp.However,if we consider the less restrictive constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1,where V(x)is nonnegative and vanishes on an open set in R^(2),it is unknown whether the sharp constant of the Trudinger-Moser inequality is still 4π.The loss of a positive lower bound of the potential V(x)makes this problem become fairly nontrivial.The main purpose of this paper is twofold.We will first establish the Trudinger-Moser inequality sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))when V is nonnegative and vanishes on an open set in R^(2).As an application,we also prove the existence of ground state solutions to the following Sciridinger equations with critical exponeitial growth:-Δu+V(x)u=f u)in R^(2),(0.1)where V(x)≥0 and vanishes on an open set of R^(2)and f has critical exponential growth.Having a positive constant lower bound for the potential V(x)(e.g.,the Rabinowitz type potential)has been the standard assumption when one deals with the existence of solutions to the above Schrodinger equations when the nonlinear term has the exponential growth.Our existence result seems to be the first one without this standard assumption.
文摘Let IB be the unit disc in R^2,H be the completion of C∞0(B)under the norm||u||H=(∫B|▽u|^2dx-∫Bu^2/(1-|x^2|^2dx)^1/2,■u∈C∞0(B).Using blow-up analysis,we prove that for anyγ≤4π,the supremum sup u∈H,||u||1,h≤1∫Beγu^2dx can be attained by some function u0∈H with||u0||1,h=1,where is a decreasingly nonnegative,radially symmetric function,and satisfies a coercive cond让ion.Namely there exists a constantδ>0 satisfying||u||21,h=||u||2H-∫Bhu^2dx≥δ||u||H^2,■u∈H.This extends earlier results of Wang-Ye[1]and Yang-Zhu[2].
基金Supported by the Outstanding Innovative Talents Cultivation Funded Programs 2020 of Renmin University of China。
文摘In this paper,using the method of blow-up analysis,we obtained a Trudinger–Moser inequality involving L^(p)-norm on a closed Riemann surface and proved the existence of an extremal function for the corresponding Trudinger–Moser functional.
文摘In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space H^n:u∈W^1,n(H^n),^sup,fH^n| H^nu|^ndμ≤1∫H^n ea|u|n/n-1-∑^n-2a^k|u|nk/n-1 k=0 k!/ρβ dμ〈∞ a/an+β/n≤1,where α 〉 0,β E [0,n), ρ and dμ are the distance function and volume element of H^n respectively.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported by the GanSu Provincial Science and Technology Program(No.22ZD6FA005)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA23060704).
文摘Poverty and income inequality are problems faced by many countries including China.Since the implementation of Targeted Poverty Alleviation(TPA),absolute poverty has been eradicated,meanwhile,Chinese rural residents'income and inequality have experienced unprecedented new dynamics,but still,very few studies have focused on them.Hence,we attempt to examine the new trends in Chinese farmers'income inequality and to understand its causes during this period.We observe that China's urban-rural income ratio has been shrinking and the urban-rural inequality has been decreasing from 2014 to 2021.The reduction in the Theil index indicates a decrease in the regional inequality of farmers'income as well,and the decline in inter-regional inequality among eight economic zones contributes about 80%to increased equality.These new trends are caused by the fact that,with the TPA,the incomes of rural residents especially that in destitute areas,grew faster than that of urban residents and farmers in prosperous areas.The higher share of non-agricultural industry and agricultural mechanization level have significant positive impact on regional equality of farmers'income,while urban-rural dual structure has significant negative inhibitory effects.The lowest farmers'income and the highest inequality in the Northwest,and the slowest growth in the Northeast deserve more attention in rural Revitalization.From these findings,we propose four policy implications that would be applied to improve Chinese farmers'income equality,govern relative poverty,and achieve common prosperity in the post-poverty era.
文摘Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.
文摘Clustering a social network is a process of grouping social actors into clusters where intra-cluster similarities among actors are higher than inter-cluster similarities. Clustering approaches, i.e. , k-medoids or hierarchical, use the distance function to measure the dissimilarities among actors. These distance functions need to fulfill various properties, including the triangle inequality (TI). However, in some cases, the triangle inequality might be violated, impacting the quality of the resulting clusters. With experiments, this paper explains how TI violates while performing traditional clustering techniques: k-medoids, hierarchical, DENGRAPH, and spectral clustering on social networks and how the violation of TI affects the quality of the resulting clusters.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
基金supported by the Natural Science Foundation of China(12201234)the Natural Science Foundation of Anhui Province of China(2008085MA07).
文摘Motivated by a recent work of Wang-Yang[19],we study the compactness of extremals[ug]for singular Hardy-Trudinger-Moser inequalities due to Hou[24].In particular,by the method of blow-up analysis,we conclude that,up to a subsequence,ug converges to an extremal in some sense asβtends to zero.
文摘In this paper, we use a geometric identity in the n-dimensional Euclidean space En and give the further improveme nt of Klamkin inequality in the space En.