Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited applica...Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited application because of the uncertainties in identifying negative samples.The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows(GDFs)and is characterized by a prominent landform featuring deep gullies.Considering the limitations of the ML model,we developed and compared two combined statistical models(FA-WE and FA-IC)based on factor analysis(FA),weight of evidence(WE),and the information content(IC)method.The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation.The results show that the FA-IC model has the best performance.The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream,on both sides of the valley in the middle and downstream of the Parlung Tsangpo River,and in the narrow valley section of each tributary.These areas encompass 86 gullies and are characterized as"narrow and steep".展开更多
The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian t...The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian terranes.Among the ophiolitic complexes,the Purang ophiolite is the biggest massif in the IYSZ,and many studies have been conducted on this ophiolite.However,previous studies have mainly focused on harzburgite,clinopyroxenite and dunite.Field observations show that mafic dykes were emplaced within the Purang ophiolite.However,petrogenetic evolutions of those mafic dykes are poorly understood.In this study,we present new LA-ICP-MS zircon U-Pb dating results,whole-rock geochemistry and Sr-Nd-Hf isotope analyses for microgabbro,gabbro and dolerite dykes from the Purang ophiolite of the southwestern IYSZ,respectively.Three samples yielded zircon U-Pb ages of144.2±2.1 Ma.127.9±2.3 Ma and 126.5±0.42 Ma,suggesting two different phases of magmatic activities distinctly.Whole-rock geochemical results suggest that the gabbro samples show alkaline features marked by enrichments of light rare earth elements(LREE)and large-ion lithophile elements(LILE),as well as Nb-Ta elements,suggesting an oceanic island basalt-like(OIB-like)geochemical affinity.However,the dolerite and microgabbro samples demonstrate sub-alkaline characteristics with normal mid-oceanic ridge basalt-like(N-MORB-like)geochemical features.Three distinct mafic dykes show significant Rb element depletion.The geochemical data and Sr-Nd-Hf isotopic features suggest that the microgabbro and gabbro rocks were derived from a depleted mantle that had been metasomatized by partial melts of sediments and enriched slab-derived fluids.The dolerite was also originated from a depleted mantle marked by significantly depleted Sr-Nd-Hf compositions,which was not influenced by enriched slab-derived fluids and sediments contamination during subsequent evolution.The isotope and geochemical data and tectonic diagrams suggest a tectonic transition from a within-plate to a midoceanic ridge basalt-like(MORB-like)setting during the period from ca.144 Ma to 127 Ma.Combined with regional background and this study,we propose that these mafic dykes were formed in an oceanic back-arc basin setting.Additionally,integrated with previous studies,we suggest that the geodynamic evolution of the southwestern and central parts of the Neo-Tethys oceanic basin is comparable in Early Cretaceous.展开更多
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers for...Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.展开更多
The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled...The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.展开更多
Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,som...Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,some economic development projects have been conducted in this area,posing potential threats to the wintering populations of the cranes and their habitats. Therefore, the current population dynamics of wintering Black-necked Cranes and habitat suitability in the Yarlung Tsangpo River basin were investigated. Methods: Twenty counties were surveyed using the line transect method in December 2017 and January 2018, and we recorded the location,flock size,number of individuals,habitat types and presence of human disturbance in which they occurred.We compared the results from the middle wintering period in this survey with those from 2014. Results: The highest number of cranes recorded was 8291,and the results showed that the cranes were mainly distributed in Lhaze, Namling, Samzhubze, and Lhunzub.A total of 577 and 495 flocks were recorded in the early and middle wintering periods, respectively. In the early wintering period,there were signi ficant differences in the number of individuals across the di fferent habitats,with crop stubble land and plowed land representing more than 30% of the total habitat utilization.In the middle wintering period, there were also signi ficant differences in the number of individuals, and the utilization of crop stubble land represented over 60% of the total. Conclusions: Wintering Black-necked Cranes mainly fed on spilled grains in stubble habitat after harvest. In the middle wintering period, some of the farmlands were plowed and irrigated,which resulted in food shortages in these areas,and the cranes tended to gather in mixed flocks of large size instead of as a single family.There were still considerable regional wintering populations decreases in Quxu,Nedong,and Sakya in 2018 compared with 2014,and these decreases were mainly due to some recently emerging threats,including farmlands being converted into areas of greenhouse cultivation,highway and railway construction, river dredging,the rapid development of the manufacturing and mining industries,and the lack of protection of important wintering sites.展开更多
The Yarlung—Tsangpo Suture Zone, the youngest in Tibet, marks a site of collision of the Eurasia continent and Indian subcontinent. It is characterised by a discontinuous line of ophiolitic bodies in southern Tibet a...The Yarlung—Tsangpo Suture Zone, the youngest in Tibet, marks a site of collision of the Eurasia continent and Indian subcontinent. It is characterised by a discontinuous line of ophiolitic bodies in southern Tibet and beyond. Fragments of Tethyan oceanic pelagic and hemipelagic deposits are distributed along the suture. These oceanic deposits occur in two distinctive tectonic settings: (1) above the ophiolite and (2) in fragments of an accretionary wedge that lies to the south of the ophiolite.Supra\|ophiolite sequences, examined at several localities, are mostly made up of chert and siliceous mudstones and display varied lithostratigraphy. Sections are thin, have different degrees of completeness and are truncated at their tops. Most of them are in undisturbed stratigraphic contact with underlying pillow lava or pillow breccia. Previously the cherts above the ophiolite in this area were dated as late Albian\|possibly early Cenomanian (Marcoux et al., 1982) or early Cenomanian (Wu, 1986). Our investigation reveals Aptian radiolarian fossils in the cherts and siliceous mudstones. The oldest radiolarians, late Barremian, occur in chert at the base of the Qunrang section. This allows reassessment of the timing of eruption of Xigaze ophiolite basalts to during, or before, the late Barremian—early Aptian.展开更多
The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of ...The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of fault structures have developed, striking NNE-NE and NWW-NW, respectively. Investigation shows that they differ markedly in terms of scope, property, active times and intensity. The NWW-NW trending faults are large in size, and most are thrust and thrust strike-slip faults, formed in earlier times. The NEE-NE-strike faults are relatively small in size individually, with concentrated distribution, constituting the NNE-trending shear extensional fault zone, which is relatively younger with evident late Quaternary activities. Strong earthquakes occur mainly in the areas or zones of intensive differential movement of the Himalayas, e.g. along the deep and large fault zones around the crustal blocks. Most earthquakes of M≥7.0 are closely related to tectonics, where large-scale Holocene active faults are distributed with complicated fault geometry, or the faults of multiple directions intersect. Among them, earthquakes of M≥7.5 have occurred on the NW and NE-trending faults with a greater strike-slip component in the fault tectonic zones.展开更多
Although the Indus-Tsangpo Suture(ITS) is the most spectacular thrust system of continent-continent collision in the world, fundamental questions about its strength evolution and deformation behavior transition remain...Although the Indus-Tsangpo Suture(ITS) is the most spectacular thrust system of continent-continent collision in the world, fundamental questions about its strength evolution and deformation behavior transition remain unanswered. Here we reported, for the first time, frictional melting-induced pseudotachylytes in the intensively deformed felsic rocks along the ITS zone in southern Tibet. This study reveals that pseudotachylytes induced profound weakness of the boundary fault between Indian and Asian plates. The intrinsically low strength of the foliated microlites crystallized from frictional melt or glass(i.e., pseudotachylyte) at seismogenic depths compared with the surrounding coarse-grained quartzofeldspathic rocks in the brittle and semi-brittle regime is sufficient to explain the localization of shear strain, the development of ductile shear zones embedded in strong wall rocks, and the transition from the strong to weak fault behaviors without invoking the presence of high fluid pressure or low friction coefficient metasomatic materials(e.g., smectite or lizardite) within the faults.展开更多
The Yarlung Tsangpo,the longest river in the southern Tibetan Plateau(TP),has attracted much research attention aimed at understanding the factors controlling its modern hydrology and possible future discharge in the ...The Yarlung Tsangpo,the longest river in the southern Tibetan Plateau(TP),has attracted much research attention aimed at understanding the factors controlling its modern hydrology and possible future discharge in the context of ongoing climate change.However,partly due to the complex regional climatic background,no consistent conclusions have been reached,especially for its upper reaches.Paleohydrological reconstructions of the source region of the Yarlung Tsangpo can potentially improve our understanding of the history of humidity and its response to climatic variability.In this study,we used a 97 cm gravity core from Gongzhu Co to reconstruct the hydrology change during the late Holocene.The core was dated using AMS ^(14)C and Pb/Cs methods,and we used measurements of element contents(determined by high-resolution XRF scanning),grain size,IC/TOC,and magnetic susceptibility to reconstruct hydroclimatic changes in the source of the Yarlung Tsangpo watershed since~4000 yr ago.Combined with a modern meteorological data set,we found that PC1 of the XRF data,the Ca/(Fe+Ti)ratio,and EM1 of the grain size data were indicative of changes in humidity.Our records demonstrate a wet interval during~4-1.7 ka BP(ka=1000 yr,BP represents years before 1950 AD),followed by a dry period during since~1 ka BP.Comparison with independent regional paleoclimatic records revealed shifts in the dominant factors controlling humidity.The wet interval during~4-1.7 ka BP was coeval with a strengthened Westerlies,implying a dominant moisture supply from northern high latitudes.However,the extremely low values of Ca/(Fe+Ti)ratio during~4-2.5 ka BP indicate potential glacial freshwater source,which is corroborated by the concurrent high magnetic susceptibility values and increased grain size.The rapid drying trend during~1.7-1 ka BP suggests a switch in moisture supply from the Westerlies to the Indian Summer Monsoon(ISM).We attribute the drought conditions after~1 ka BP to a weakened ISM,although a Westerlies influence and the potential effect of high temperatures on evaporation cannot be excluded.We suggest that future hydroclimatic research in this region should attempt to distinguish the individual moisture contributions of the ISM and the Westerlies during the last millennium.展开更多
The fluvial process of the Yalu Tsangpo River occurs concurrently with the uplift of the Qinghai-Tibet Plateau.Therefore,the river exhibits unique features in morphology and sediment deposition.Field investigations we...The fluvial process of the Yalu Tsangpo River occurs concurrently with the uplift of the Qinghai-Tibet Plateau.Therefore,the river exhibits unique features in morphology and sediment deposition.Field investigations were performed from 2009–2011and the depth of the interface between the sediment deposits and bed rock was detected with an electromagnetic imaging system(EH4)at 29 cross sections.Sediment deposits were sampled along the Yalu Tsangpo valley from Xietongmen to the Yalu Tsangpo Canyon.The results show that a huge amount of sediment has been deposited in four wide valley sections because the uplift rate in these sections was lower than that in the downstream gorge sections over the past million years.About 518 billion m3of gravel and sand have been stored in the high mountain river valleys,which has changed the V-shaped mountain river valley into a U-shaped wide river valley in the four sections.In the sections with high uplift rates the river bed is incised and has formed gorges and the Yalu Tsangpo Canyon.展开更多
The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsan...The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsangpo River basin has rapidly increased.Evaluating water quality and water environmental capacity is needed for water resource management in Tibet.This study used a single factor evaluation method to evaluate water quality of the Zhongba-Nyingchi section of the Yarlung Tsangpo River based on measured data of CODcr, NH3-N and TP in the study area.Based on these data,determinations of ideal water environmental capacity, emissions of pollutants and remaining water environmental capacity of the study area were made by a one-dimensional steady water quality model under either section-head control or cross-section control.The data indicate that most of the monitoring sections in the study area experienced good water quality.The three pollutants all had large remaining water environmental capacity generally,but TP exceeded state levels in the two upstream functional areas,and levels above state standards of CODcr and TP were found in several calculation cells of the two downstream functional areas.Therefore,emissions of pollutants need to be reduced to protect the water environment quality of the Yarlung Tsangpo River.展开更多
Climate and tectonism are both particularly intense in the Yarlung Zangbo (Tsangpo) Great Canyon in the eastern Himalayan syntaxis,which is characterized by the most rapid landscape evolution of anywhere in the world....Climate and tectonism are both particularly intense in the Yarlung Zangbo (Tsangpo) Great Canyon in the eastern Himalayan syntaxis,which is characterized by the most rapid landscape evolution of anywhere in the world.Thus,the eastern Himalayan syntaxis is one of the best locations to study the interactions between climate and tectonics.This paper investigates the cooling ages of the Doxong La-Baibung profile using apatite fission track (AFT) dating on 11 bedrock samples at elevations ranging from 4210 to 710 m.There are topographic,climatic,metamorphic,and thermochronological gradients in the profile,providing good conditions to study interactions between climate and tectonics.AFT ages ranged from 4.6±0.6 Ma to 1.7±0.3 Ma,and the mean fission track lengths ranged from 11.0 to 12.4 μm.It was found that the cooling rates revealed by AFT ages increased with decreasing elevation.However,the tendency of the cooling rates revealed by the 40 Ar-39 Ar ages was different from that indicated by the AFT ages.Moreover,for most districts of the eastern Himalayan syntaxis,the compiled AFT age distribution correlates well with the annual average precipitation,indicating the coupling of the cooling and erosion rates of the near-surface rock and precipitation.The geothermal history modeling results indicate an obvious increase in the cooling and erosion rate between 1.0 and 0.5 Ma.This age is consistent with other research findings for this time,when the vapor channel of the Yarlung Zangbo Great Canyon began to take effect.These evidences suggest that climate,especially precipitation,has acting as a key factor influencing the rapid cooling and erosion in the Yarlung Zangbo Great Canyon since 1-0.5 Ma.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.42377170).
文摘Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited application because of the uncertainties in identifying negative samples.The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows(GDFs)and is characterized by a prominent landform featuring deep gullies.Considering the limitations of the ML model,we developed and compared two combined statistical models(FA-WE and FA-IC)based on factor analysis(FA),weight of evidence(WE),and the information content(IC)method.The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation.The results show that the FA-IC model has the best performance.The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream,on both sides of the valley in the middle and downstream of the Parlung Tsangpo River,and in the narrow valley section of each tributary.These areas encompass 86 gullies and are characterized as"narrow and steep".
基金supported by the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (J1901-7,J1901-16)the Natural Foundation of Shandong Province (ZR2019QD002,ZR2017BD033)+6 种基金the Chinese Academy of Geological Sciences Fund (K1710)the National Key Research and Development Project of China (No.2016YFC0600310)the National Natural Science Foundation of China (NNSFCProject Nos.41672046,41641015,41703036,41720104009)the China Geological Survey (CGSProject No.DD20160023)the International Geological Correlation Programme (IGCP-649)
文摘The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian terranes.Among the ophiolitic complexes,the Purang ophiolite is the biggest massif in the IYSZ,and many studies have been conducted on this ophiolite.However,previous studies have mainly focused on harzburgite,clinopyroxenite and dunite.Field observations show that mafic dykes were emplaced within the Purang ophiolite.However,petrogenetic evolutions of those mafic dykes are poorly understood.In this study,we present new LA-ICP-MS zircon U-Pb dating results,whole-rock geochemistry and Sr-Nd-Hf isotope analyses for microgabbro,gabbro and dolerite dykes from the Purang ophiolite of the southwestern IYSZ,respectively.Three samples yielded zircon U-Pb ages of144.2±2.1 Ma.127.9±2.3 Ma and 126.5±0.42 Ma,suggesting two different phases of magmatic activities distinctly.Whole-rock geochemical results suggest that the gabbro samples show alkaline features marked by enrichments of light rare earth elements(LREE)and large-ion lithophile elements(LILE),as well as Nb-Ta elements,suggesting an oceanic island basalt-like(OIB-like)geochemical affinity.However,the dolerite and microgabbro samples demonstrate sub-alkaline characteristics with normal mid-oceanic ridge basalt-like(N-MORB-like)geochemical features.Three distinct mafic dykes show significant Rb element depletion.The geochemical data and Sr-Nd-Hf isotopic features suggest that the microgabbro and gabbro rocks were derived from a depleted mantle that had been metasomatized by partial melts of sediments and enriched slab-derived fluids.The dolerite was also originated from a depleted mantle marked by significantly depleted Sr-Nd-Hf compositions,which was not influenced by enriched slab-derived fluids and sediments contamination during subsequent evolution.The isotope and geochemical data and tectonic diagrams suggest a tectonic transition from a within-plate to a midoceanic ridge basalt-like(MORB-like)setting during the period from ca.144 Ma to 127 Ma.Combined with regional background and this study,we propose that these mafic dykes were formed in an oceanic back-arc basin setting.Additionally,integrated with previous studies,we suggest that the geodynamic evolution of the southwestern and central parts of the Neo-Tethys oceanic basin is comparable in Early Cretaceous.
基金supported by Project No.1212011120185 sponsored by China Geological Survey
文摘Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.
基金provided by the National Key Research and Development Program of China "Deep Structure and Ore-forming Process of Main Mineralization System in Tibetan Orogen"(2016YFC0600300)the National Basic Research Program of China (2011CB403104)+1 种基金the China Geological Survey (12120113037901)the National Natural Science Foundation of China(41320104004) and(41503040)
文摘The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.
基金supported by the program from Forestry and Grassland Department of Tibet Autonomous Region
文摘Background:The Black-necked Crane (Grus nigricollis)is an internationally threatened crane living on the plateau, mainly in winter, in the Yarlung Tsangpo River basin in Tibet,western China. In the past five years,some economic development projects have been conducted in this area,posing potential threats to the wintering populations of the cranes and their habitats. Therefore, the current population dynamics of wintering Black-necked Cranes and habitat suitability in the Yarlung Tsangpo River basin were investigated. Methods: Twenty counties were surveyed using the line transect method in December 2017 and January 2018, and we recorded the location,flock size,number of individuals,habitat types and presence of human disturbance in which they occurred.We compared the results from the middle wintering period in this survey with those from 2014. Results: The highest number of cranes recorded was 8291,and the results showed that the cranes were mainly distributed in Lhaze, Namling, Samzhubze, and Lhunzub.A total of 577 and 495 flocks were recorded in the early and middle wintering periods, respectively. In the early wintering period,there were signi ficant differences in the number of individuals across the di fferent habitats,with crop stubble land and plowed land representing more than 30% of the total habitat utilization.In the middle wintering period, there were also signi ficant differences in the number of individuals, and the utilization of crop stubble land represented over 60% of the total. Conclusions: Wintering Black-necked Cranes mainly fed on spilled grains in stubble habitat after harvest. In the middle wintering period, some of the farmlands were plowed and irrigated,which resulted in food shortages in these areas,and the cranes tended to gather in mixed flocks of large size instead of as a single family.There were still considerable regional wintering populations decreases in Quxu,Nedong,and Sakya in 2018 compared with 2014,and these decreases were mainly due to some recently emerging threats,including farmlands being converted into areas of greenhouse cultivation,highway and railway construction, river dredging,the rapid development of the manufacturing and mining industries,and the lack of protection of important wintering sites.
文摘The Yarlung—Tsangpo Suture Zone, the youngest in Tibet, marks a site of collision of the Eurasia continent and Indian subcontinent. It is characterised by a discontinuous line of ophiolitic bodies in southern Tibet and beyond. Fragments of Tethyan oceanic pelagic and hemipelagic deposits are distributed along the suture. These oceanic deposits occur in two distinctive tectonic settings: (1) above the ophiolite and (2) in fragments of an accretionary wedge that lies to the south of the ophiolite.Supra\|ophiolite sequences, examined at several localities, are mostly made up of chert and siliceous mudstones and display varied lithostratigraphy. Sections are thin, have different degrees of completeness and are truncated at their tops. Most of them are in undisturbed stratigraphic contact with underlying pillow lava or pillow breccia. Previously the cherts above the ophiolite in this area were dated as late Albian\|possibly early Cenomanian (Marcoux et al., 1982) or early Cenomanian (Wu, 1986). Our investigation reveals Aptian radiolarian fossils in the cherts and siliceous mudstones. The oldest radiolarians, late Barremian, occur in chert at the base of the Qunrang section. This allows reassessment of the timing of eruption of Xigaze ophiolite basalts to during, or before, the late Barremian—early Aptian.
基金funded by the China Hydropower Engineering Consulting Group Co.(CHC-KJ-2007-12-01)
文摘The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of fault structures have developed, striking NNE-NE and NWW-NW, respectively. Investigation shows that they differ markedly in terms of scope, property, active times and intensity. The NWW-NW trending faults are large in size, and most are thrust and thrust strike-slip faults, formed in earlier times. The NEE-NE-strike faults are relatively small in size individually, with concentrated distribution, constituting the NNE-trending shear extensional fault zone, which is relatively younger with evident late Quaternary activities. Strong earthquakes occur mainly in the areas or zones of intensive differential movement of the Himalayas, e.g. along the deep and large fault zones around the crustal blocks. Most earthquakes of M≥7.0 are closely related to tectonics, where large-scale Holocene active faults are distributed with complicated fault geometry, or the faults of multiple directions intersect. Among them, earthquakes of M≥7.5 have occurred on the NW and NE-trending faults with a greater strike-slip component in the fault tectonic zones.
基金supported by the National Natural Science Foundation of China(No.40921001 and No.40921001)the Geological Survey of China(No.1212010818094)to Xuthe Natural Sciences and Engineering Research Council of Canada to Ji
文摘Although the Indus-Tsangpo Suture(ITS) is the most spectacular thrust system of continent-continent collision in the world, fundamental questions about its strength evolution and deformation behavior transition remain unanswered. Here we reported, for the first time, frictional melting-induced pseudotachylytes in the intensively deformed felsic rocks along the ITS zone in southern Tibet. This study reveals that pseudotachylytes induced profound weakness of the boundary fault between Indian and Asian plates. The intrinsically low strength of the foliated microlites crystallized from frictional melt or glass(i.e., pseudotachylyte) at seismogenic depths compared with the surrounding coarse-grained quartzofeldspathic rocks in the brittle and semi-brittle regime is sufficient to explain the localization of shear strain, the development of ductile shear zones embedded in strong wall rocks, and the transition from the strong to weak fault behaviors without invoking the presence of high fluid pressure or low friction coefficient metasomatic materials(e.g., smectite or lizardite) within the faults.
基金financially supported by the National Natural Science Foundation of China(Grant No.42025103)Basic Science Center for Tibetan Plateau Earth System(BSCTPES,NSFC project No.41988101)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research program(No.2019QZKK0601)the Scientific Research Funding of Sichuan Normal University.
文摘The Yarlung Tsangpo,the longest river in the southern Tibetan Plateau(TP),has attracted much research attention aimed at understanding the factors controlling its modern hydrology and possible future discharge in the context of ongoing climate change.However,partly due to the complex regional climatic background,no consistent conclusions have been reached,especially for its upper reaches.Paleohydrological reconstructions of the source region of the Yarlung Tsangpo can potentially improve our understanding of the history of humidity and its response to climatic variability.In this study,we used a 97 cm gravity core from Gongzhu Co to reconstruct the hydrology change during the late Holocene.The core was dated using AMS ^(14)C and Pb/Cs methods,and we used measurements of element contents(determined by high-resolution XRF scanning),grain size,IC/TOC,and magnetic susceptibility to reconstruct hydroclimatic changes in the source of the Yarlung Tsangpo watershed since~4000 yr ago.Combined with a modern meteorological data set,we found that PC1 of the XRF data,the Ca/(Fe+Ti)ratio,and EM1 of the grain size data were indicative of changes in humidity.Our records demonstrate a wet interval during~4-1.7 ka BP(ka=1000 yr,BP represents years before 1950 AD),followed by a dry period during since~1 ka BP.Comparison with independent regional paleoclimatic records revealed shifts in the dominant factors controlling humidity.The wet interval during~4-1.7 ka BP was coeval with a strengthened Westerlies,implying a dominant moisture supply from northern high latitudes.However,the extremely low values of Ca/(Fe+Ti)ratio during~4-2.5 ka BP indicate potential glacial freshwater source,which is corroborated by the concurrent high magnetic susceptibility values and increased grain size.The rapid drying trend during~1.7-1 ka BP suggests a switch in moisture supply from the Westerlies to the Indian Summer Monsoon(ISM).We attribute the drought conditions after~1 ka BP to a weakened ISM,although a Westerlies influence and the potential effect of high temperatures on evaporation cannot be excluded.We suggest that future hydroclimatic research in this region should attempt to distinguish the individual moisture contributions of the ISM and the Westerlies during the last millennium.
基金supported by the National Natural Science Foundation of China(Grant Nos.41071001,41001008)the Ministry of Science and Technology of China(Grant No.2011DFA20820)
文摘The fluvial process of the Yalu Tsangpo River occurs concurrently with the uplift of the Qinghai-Tibet Plateau.Therefore,the river exhibits unique features in morphology and sediment deposition.Field investigations were performed from 2009–2011and the depth of the interface between the sediment deposits and bed rock was detected with an electromagnetic imaging system(EH4)at 29 cross sections.Sediment deposits were sampled along the Yalu Tsangpo valley from Xietongmen to the Yalu Tsangpo Canyon.The results show that a huge amount of sediment has been deposited in four wide valley sections because the uplift rate in these sections was lower than that in the downstream gorge sections over the past million years.About 518 billion m3of gravel and sand have been stored in the high mountain river valleys,which has changed the V-shaped mountain river valley into a U-shaped wide river valley in the four sections.In the sections with high uplift rates the river bed is incised and has formed gorges and the Yalu Tsangpo Canyon.
基金The Science and Technology Plan Project of Tibet Autonomous Region(Z2016C01G01/04/03)
文摘The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsangpo River basin has rapidly increased.Evaluating water quality and water environmental capacity is needed for water resource management in Tibet.This study used a single factor evaluation method to evaluate water quality of the Zhongba-Nyingchi section of the Yarlung Tsangpo River based on measured data of CODcr, NH3-N and TP in the study area.Based on these data,determinations of ideal water environmental capacity, emissions of pollutants and remaining water environmental capacity of the study area were made by a one-dimensional steady water quality model under either section-head control or cross-section control.The data indicate that most of the monitoring sections in the study area experienced good water quality.The three pollutants all had large remaining water environmental capacity generally,but TP exceeded state levels in the two upstream functional areas,and levels above state standards of CODcr and TP were found in several calculation cells of the two downstream functional areas.Therefore,emissions of pollutants need to be reduced to protect the water environment quality of the Yarlung Tsangpo River.
基金supported by the National Natural Science Foundation of China(40872149 and 40472100)the National Natural Science Funds for Distinguished Young Scholar(41002067)
文摘Climate and tectonism are both particularly intense in the Yarlung Zangbo (Tsangpo) Great Canyon in the eastern Himalayan syntaxis,which is characterized by the most rapid landscape evolution of anywhere in the world.Thus,the eastern Himalayan syntaxis is one of the best locations to study the interactions between climate and tectonics.This paper investigates the cooling ages of the Doxong La-Baibung profile using apatite fission track (AFT) dating on 11 bedrock samples at elevations ranging from 4210 to 710 m.There are topographic,climatic,metamorphic,and thermochronological gradients in the profile,providing good conditions to study interactions between climate and tectonics.AFT ages ranged from 4.6±0.6 Ma to 1.7±0.3 Ma,and the mean fission track lengths ranged from 11.0 to 12.4 μm.It was found that the cooling rates revealed by AFT ages increased with decreasing elevation.However,the tendency of the cooling rates revealed by the 40 Ar-39 Ar ages was different from that indicated by the AFT ages.Moreover,for most districts of the eastern Himalayan syntaxis,the compiled AFT age distribution correlates well with the annual average precipitation,indicating the coupling of the cooling and erosion rates of the near-surface rock and precipitation.The geothermal history modeling results indicate an obvious increase in the cooling and erosion rate between 1.0 and 0.5 Ma.This age is consistent with other research findings for this time,when the vapor channel of the Yarlung Zangbo Great Canyon began to take effect.These evidences suggest that climate,especially precipitation,has acting as a key factor influencing the rapid cooling and erosion in the Yarlung Zangbo Great Canyon since 1-0.5 Ma.