The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty yea...The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty years, various versions of the modified scenario have been proposed to simulate the effects of missing mass. These schemes replace the dynamic effect of dark matter by introducing some tiny extra force terms in the dynamic equations. Such extra forces have mainly interactions on large scales of galaxies, such as fitting the Tully-Fisher relation or asymptotically flat rotation curves. The discussion in this paper shows that the evidence of taking the modified schemes as fundamental theory is still insufficient. In this paper, we display a system of simplified galactic dynamical equations derived from weak field and low-speed approximations of Einstein field equations, and then we use it to discuss two important empirical relations in galactic dynamics, namely the Faber-Jackson relation and Tully-Fisher relation, as well as the related fundamental plane. These discussions provide a reference scheme for improving the dispersion of the empirical relations, and also provide a theoretical foundation to analyze the properties of dark matter and galactic structures.展开更多
We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift id...We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.展开更多
An old topic of dimensional analysis in astrophysics is presented and new results, or quantitative explanations of some observational facts are obtained, in particular, on the base of the supernova, SN, explosions. Th...An old topic of dimensional analysis in astrophysics is presented and new results, or quantitative explanations of some observational facts are obtained, in particular, on the base of the supernova, SN, explosions. The presentation starts with the derivation of two similarity criteria for astrophysical objects constructed out of four measurable quantities: mass, M, luminosity, Lb, velocity U, size R, and gravitational constant G. The first well known criterium describes the virial principle and the other one seems to be new and is based on the Tully-Fisher observational relationship between luminosity and velocity. The energy generated by SN explosions allows one to estimate well the interstellar turbulent velocities and magnetic field in our Galaxy, resulting in 3 to 4 microgauss. It is found that for z ≥ 0.6 the observed distant galactic clusters are far from virial equilibrium and the degree of disequilibrium is increasing with z. It means that to reach such an equilibrium the cluster age should be of order ten dynamical time scales, see Equation (7). For all considered galaxy clusters the second similarity criterium was found to be constant with a precision of about ten per cent. Therefore it could be considered as a general law, though for different classes of objects the numerical coefficient may vary. Some scales are proposed and two of them are tested for galactic clusters by finding numerical coefficients with accuracies of about 20 percent or better: e.g. observed luminocities of clusters are W=Lb=a1(M/R)5/2G3/2 with for the first eleven objects from the Table for which the virial equilibrium is found with the same accuracy. The square root of the two criteria ratio 3=( 2/ 1)1/2=U(WG)-1/5 explains the Tully-Fisher law and is constant for all 32 available clusters from [1,2] and is equal to 1.8 ± 0.2. This is because 3 has not global values of total mass and size.展开更多
Following the idea of our previous paper we distinguish also in the case of Newtonian gravity as in the electrodynamics between extensive and intensive field quantities. Between both, a “material’’ quantity produce...Following the idea of our previous paper we distinguish also in the case of Newtonian gravity as in the electrodynamics between extensive and intensive field quantities. Between both, a “material’’ quantity produced e.g. by vacuum polarisations induced by the gravitational field strength itself is mediated. It acts in such a way that it amplifies the field strength in weak gravitational fields and reduces the field strength in strong gravitational fields following Lenz’s rule. Newton’s gravity is valid only in a very large intermediate range of middle field strength F?, F0? and F1?critical field strengths). In this way dark matter and black holes may be avoidable.展开更多
In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to...In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.展开更多
文摘The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty years, various versions of the modified scenario have been proposed to simulate the effects of missing mass. These schemes replace the dynamic effect of dark matter by introducing some tiny extra force terms in the dynamic equations. Such extra forces have mainly interactions on large scales of galaxies, such as fitting the Tully-Fisher relation or asymptotically flat rotation curves. The discussion in this paper shows that the evidence of taking the modified schemes as fundamental theory is still insufficient. In this paper, we display a system of simplified galactic dynamical equations derived from weak field and low-speed approximations of Einstein field equations, and then we use it to discuss two important empirical relations in galactic dynamics, namely the Faber-Jackson relation and Tully-Fisher relation, as well as the related fundamental plane. These discussions provide a reference scheme for improving the dispersion of the empirical relations, and also provide a theoretical foundation to analyze the properties of dark matter and galactic structures.
文摘We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.
文摘An old topic of dimensional analysis in astrophysics is presented and new results, or quantitative explanations of some observational facts are obtained, in particular, on the base of the supernova, SN, explosions. The presentation starts with the derivation of two similarity criteria for astrophysical objects constructed out of four measurable quantities: mass, M, luminosity, Lb, velocity U, size R, and gravitational constant G. The first well known criterium describes the virial principle and the other one seems to be new and is based on the Tully-Fisher observational relationship between luminosity and velocity. The energy generated by SN explosions allows one to estimate well the interstellar turbulent velocities and magnetic field in our Galaxy, resulting in 3 to 4 microgauss. It is found that for z ≥ 0.6 the observed distant galactic clusters are far from virial equilibrium and the degree of disequilibrium is increasing with z. It means that to reach such an equilibrium the cluster age should be of order ten dynamical time scales, see Equation (7). For all considered galaxy clusters the second similarity criterium was found to be constant with a precision of about ten per cent. Therefore it could be considered as a general law, though for different classes of objects the numerical coefficient may vary. Some scales are proposed and two of them are tested for galactic clusters by finding numerical coefficients with accuracies of about 20 percent or better: e.g. observed luminocities of clusters are W=Lb=a1(M/R)5/2G3/2 with for the first eleven objects from the Table for which the virial equilibrium is found with the same accuracy. The square root of the two criteria ratio 3=( 2/ 1)1/2=U(WG)-1/5 explains the Tully-Fisher law and is constant for all 32 available clusters from [1,2] and is equal to 1.8 ± 0.2. This is because 3 has not global values of total mass and size.
文摘Following the idea of our previous paper we distinguish also in the case of Newtonian gravity as in the electrodynamics between extensive and intensive field quantities. Between both, a “material’’ quantity produced e.g. by vacuum polarisations induced by the gravitational field strength itself is mediated. It acts in such a way that it amplifies the field strength in weak gravitational fields and reduces the field strength in strong gravitational fields following Lenz’s rule. Newton’s gravity is valid only in a very large intermediate range of middle field strength F?, F0? and F1?critical field strengths). In this way dark matter and black holes may be avoidable.
文摘In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.