针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,...针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。展开更多
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg...In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference.展开更多
文摘针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。
基金National Natural Science Foundation of China(No.61806006)Jiangsu University Superior Discipline Construction Project。
文摘In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference.