期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
U型卷积网络在乳腺医学图像分割中的研究综述 被引量:1
1
作者 蒲秋梅 殷帅 +1 位作者 李正茂 赵丽娜 《计算机科学与探索》 CSCD 北大核心 2024年第6期1383-1403,共21页
U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网... U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响。深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳。针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结。阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结。讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望。 展开更多
关键词 医学图像分割 u型卷积网络 深度学习 乳腺疾病 图像处理
下载PDF
基于U型卷积网络的视网膜血管分割方法 被引量:2
2
作者 秦晓飞 郑超阳 +2 位作者 陈浩胜 李夏 何致远 《光学仪器》 2021年第2期24-30,共7页
视网膜血管的结构信息对眼科疾病的诊断具有重要的指导意义,对视网膜血管图像进行高效正确的分割成为临床的迫切需求。为此,提出了一种U型卷积网络,实现了更高效的自动化视网膜血管分割。骨干网络基于经典的编解码架构,编码器采用预训... 视网膜血管的结构信息对眼科疾病的诊断具有重要的指导意义,对视网膜血管图像进行高效正确的分割成为临床的迫切需求。为此,提出了一种U型卷积网络,实现了更高效的自动化视网膜血管分割。骨干网络基于经典的编解码架构,编码器采用预训练的残差模块充分提取每一层的特征,解码器通过转置卷积逐层进行上采样,增加了特征的复用性。网络在中间层引入ASPP(Atrous Spatial Pyramid Pooling)模块,提取不同尺度的视网膜血管特征。为了在类内预测上保持一致,在跳级层利用通道注意力模块对特征进行自适应细化,融合了不同层次的特征。在DRIVE数据集上的实验结果表明,与其他相关算法性能相比,该算法的敏感性、特异性、准确率均最高,模型泛化能力好,大大提高了视网膜血管分割的准确性。 展开更多
关键词 视网膜血管 u型卷积网络 编解码 通道注意力模块
下载PDF
改进U型卷积网络的细胞核分割方法 被引量:6
3
作者 姜慧明 秦贵和 +1 位作者 邹密 孙铭会 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第4期100-107,121,共9页
针对经典U型卷积网络在细胞核分割过程中对距离相近目标的边界较难区分、对模糊目标产生误识别等问题,提出一种改进的U型卷积网络(DU-Net)模型。为增强目标边界特征,提出一种梯度融合方法,计算样本梯度信息并将梯度图多尺度融合至U-Net... 针对经典U型卷积网络在细胞核分割过程中对距离相近目标的边界较难区分、对模糊目标产生误识别等问题,提出一种改进的U型卷积网络(DU-Net)模型。为增强目标边界特征,提出一种梯度融合方法,计算样本梯度信息并将梯度图多尺度融合至U-Net编码器。解码器浅层特征通过卷积上采样密集连接至深层特征,增加特征的复用性。针对梯度消失问题,DU-Net模型在每个卷积层后采用批归一化和ReLU激活结构。针对经典U-Net模型对模糊目标的误识别问题,提出一种改进的交叉熵损失函数,该损失函数降低了模糊背景点对模型的干扰,同时提高了模型对小目标的识别能力。在2018年数据科学碗公布的670张图片、约29 500个细胞核的公开数据集上验证了DU-Net模型,结果表明,模型的预测结果与真实标签在Dice系数和Jaccard相似系数两项评价指标上分别达到95.9%和91.0%,性能优于U-Net和SegNet编码器,显著优于经典卷积神经网络模型FCN-8s。 展开更多
关键词 细胞核分割 u型卷积网络 梯度融合 密集连接 改进交叉熵损失
下载PDF
基于U型卷积神经网络的航空影像建筑物检测 被引量:49
4
作者 伍广明 陈奇 +3 位作者 Ryosuke SHIBASAKI 郭直灵 邵肖伟 许永伟 《测绘学报》 EI CSCD 北大核心 2018年第6期864-872,共9页
经典的卷积神经网络结构在前向传播过程中分辨率不断下降,导致仅采用末层特征时难以实现建筑物边缘的精确分割,进而限制目标检测精度。针对该问题,提出一种基于U型卷积网络的建筑物检测方法。首先借鉴在图像分割领域中性能出色的神经网... 经典的卷积神经网络结构在前向传播过程中分辨率不断下降,导致仅采用末层特征时难以实现建筑物边缘的精确分割,进而限制目标检测精度。针对该问题,提出一种基于U型卷积网络的建筑物检测方法。首先借鉴在图像分割领域中性能出色的神经网络模型U-Net的建模思想,采用对称式的网络结构融合深度网络中的高维和低维特征以恢复高保真边界;其次考虑到经典U-Net对位于特征金字塔顶层的模型参数优化程度相对不足,通过在顶层和底层两个不同尺度输出预测结果进行双重约束,进一步提升了建筑物检测精度。在覆盖范围达30km2、建筑物目标28 000余个的航空影像数据集上的试验结果表明,本文方法的检测结果在IoU和Kappa两项关键评价指标的均值上分别达到83.7%和89.5%,优于经典U-Net模型,显著优于经典全卷积网络模型和基于人工设计特征的AdaBoost模型。 展开更多
关键词 航空影像 建筑物检测 卷积神经网络 u型卷积网络 特征金字塔
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
5
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 u型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模 多尺度特征提取
下载PDF
基于U型卷积神经网络的微地震信号降噪方法 被引量:3
6
作者 郑路佳 管闯 +2 位作者 李含阳 李航 董宏丽 《东北石油大学学报》 CAS 北大核心 2023年第5期111-124,I0008,共15页
降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时... 降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时频峰值法、卷积神经网络降噪方法的降噪效果进行对比。结果表明:U-NetNA方法可以应用于合成和实际微地震数据降噪,具有可行性和有效性。与其他方法相比,U-NetNA方法得到更丰富的有效信号特征,能够有效压制噪声,提高微地震信号信噪比。该结果对微地震事件识别、反演定位和裂缝解释等具有参考意义。 展开更多
关键词 u卷积神经网络 噪声压制 空洞卷积 包络熵 微地震信号 u-NetNA方法
下载PDF
结合超像素和U型全卷积网络的胰腺分割方法 被引量:3
7
作者 曹正文 乔念祖 +1 位作者 卜起荣 冯筠 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1777-1785,共9页
为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U... 为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U型全卷积网络的输入;最后,得到分割好的胰腺器官.在NIH胰腺公开数据集上的实验结果表明,文中方法将戴斯相似系数(DSC)提高到87.9%,高于目前已有的胰腺图像分割方法.并且其运算速度高于U-NET. 展开更多
关键词 胰腺图像分割 超像素 u卷积网络 戴斯相似系数
下载PDF
遥感影像地物分类多注意力融和U型网络法 被引量:29
8
作者 李道纪 郭海涛 +3 位作者 卢俊 赵传 林雨准 余东行 《测绘学报》 EI CSCD 北大核心 2020年第8期1051-1064,共14页
经典的卷积神经网络在对遥感影像进行地物分类的过程中,由于影像中的地物尺寸和光谱特征差异较大、待分类目标背景环境复杂等问题,经典影像分类方法很难得到理想的分类结果。针对这些问题,本文借鉴U型卷积神经网络多层次特征融和的思想... 经典的卷积神经网络在对遥感影像进行地物分类的过程中,由于影像中的地物尺寸和光谱特征差异较大、待分类目标背景环境复杂等问题,经典影像分类方法很难得到理想的分类结果。针对这些问题,本文借鉴U型卷积神经网络多层次特征融和的思想,提出了多注意力融和U型网络(MAFU-Net)。该网络利用注意力模块提取和处理不同层次的语义信息,强化不同位置像素和不同特征图之间的相关性,进而提高网络在复杂背景条件下的分类性能。为了验证本文提出的网络在遥感影像地物分类中的效果,分别在ISPRS上的Vaihingen数据集以及北京、河南两地区高分二号数据集上进行了试验,并与目前主流的语义分割网络进行了对比。试验结果表明,相比其他网络,本文提出的MAFU-Net在不同特点的数据集上均可以得到最佳的地物分类结果。同时,该网络结构简单、计算复杂度低、参数量少,具有很强的实用性。另外,本文充分利用特征可视化手段进行MAFU-Net和其他网络的分类性能对比分析,试验结果表明,目前多数深度学习网络模型的深层次原理和作用机制较为复杂,无法准确解释特定网络为何在某种数据集中会失效。这需要研究人员进一步通过更加高级的可视化表达方法和量化准则来对特定深度学习模型及网络性能进行分析评价,进而对更加高级的模型结构进行设计。 展开更多
关键词 地物分类 遥感影像 注意力机制 u卷积神经网络 语义分割
下载PDF
基于改进的U-Net肺结节分割方法研究 被引量:8
9
作者 苗语 丰振航 +2 位作者 杨华民 蒋振刚 师为礼 《计算机应用与软件》 北大核心 2021年第12期213-219,共7页
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复... 由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性。通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题。提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题。在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优。 展开更多
关键词 肺结节分割 u型卷积网络 密集连接 损失函数 卷积条件随机场
下载PDF
融合背景估计与U-Net的文档图像二值化算法 被引量:9
10
作者 熊炜 王鑫睿 +2 位作者 王娟 刘敏 曾春艳 《计算机应用研究》 CSCD 北大核心 2020年第3期896-900,共5页
针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,... 针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。 展开更多
关键词 文档图像二值化 对比度增强 形态学闭操作 u卷积神经网络 全局最优阈值处理
下载PDF
U型卷积神经网络的ZY-3影像道路提取方法 被引量:16
11
作者 郭正胜 李参海 王智敏 《测绘科学》 CSCD 北大核心 2020年第4期51-57,共7页
针对经典全卷积神经网络在池化和上采样过程中造成图像分辨率不断下降以及对各个像素进行分类时忽略了像素之间的关系,导致提取道路比较模糊和平滑的问题。该文提出一种基于U型卷积网络的ZY-3道路提取方法。首先,参考医学图像分割领域... 针对经典全卷积神经网络在池化和上采样过程中造成图像分辨率不断下降以及对各个像素进行分类时忽略了像素之间的关系,导致提取道路比较模糊和平滑的问题。该文提出一种基于U型卷积网络的ZY-3道路提取方法。首先,参考医学图像分割领域表现突出的U-Net模型,采用对称式网络结构将低级细节信息与高级语义信息相结合,提高道路的初提取精度;其次考虑到卷积神经网络对百万量级的参数优化程度相对不足,采用集成学习的方法,通过变更权重获得若干个模型进行融合,进一步提升了道路提取的精度;最后,通过使用形态学开运算完成孔洞的去除等工作。实验结果表明,该文方法的提取结果在不同实验区域中平均准确度达到了95%以上,显著优于基于经典全卷积网络模型、基于纹理与形状特征提取道路的方法。 展开更多
关键词 道路提取 ZY-3影像 卷积神经网络 u型卷积网络 集成学习
原文传递
基于U-Net的变压器磁场云图预测方法
12
作者 王艳阳 金亮 《电气工程》 2022年第2期86-94,共9页
有限元分析和计算已成为电磁装置或系统性能计算的主要工具,但由于传统有限元方法求解电磁场时面临建模复杂、计算资源消耗过大等问题,本文采用了一种U型深度卷积神经网络(U-Net)的磁场云图预测模型。以变压器作为研究对象,建立变压器... 有限元分析和计算已成为电磁装置或系统性能计算的主要工具,但由于传统有限元方法求解电磁场时面临建模复杂、计算资源消耗过大等问题,本文采用了一种U型深度卷积神经网络(U-Net)的磁场云图预测模型。以变压器作为研究对象,建立变压器电磁耦合有限元模型,通过改变变压器的几何结构参数、材料和激励信息,计算得到磁场云图作为神经网络训练的样本数据。为提高网络预测性能,通过田口法对U-Net模型进行优化,确定最优模型设置。将U-Net模型预测磁场云图与有限元计算结果对比,U-Net模型预测磁场云图中每个像素点的均方误差在0.3%~0.9%范围内,能够很好地学习到变压器数据集之间的映射关系,生成高分辨率的图像,从而减少了计算时间,对深度学习在预测磁场云图方向上有很大的实际意义。 展开更多
关键词 传统有限元方法 电磁场 u深度卷积神经网络 变压器
下载PDF
多尺度注意力融合与视觉Transformer方法优化的电阻抗层析成像深度学习方法
13
作者 王琦 张涛 +2 位作者 徐超炜 卢梦凡 王子辰 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期52-63,共12页
电阻抗层析成像(EIT)具有显著的可视化和非侵入性等特点,在工业和生物医学工程领域展现了其广阔的应用潜力。由于其逆问题存在高度非线性和病态性特点,导致了数值成像方法在空间分辨率上的局限性,尤其是在多相介质分布情况下,现有EIT技... 电阻抗层析成像(EIT)具有显著的可视化和非侵入性等特点,在工业和生物医学工程领域展现了其广阔的应用潜力。由于其逆问题存在高度非线性和病态性特点,导致了数值成像方法在空间分辨率上的局限性,尤其是在多相介质分布情况下,现有EIT技术在成像过程中出现边界失真和电导率误差,从而影响最终的成像精度。本文提出了一种基于卷积注意力机制的U型深度成像方法——MAT-UNet,将卷积块注意力模块(CBAM)与U-Net结构相结合,在特征提取与融合过程中嵌入卷积块注意力模块,以增强模型的注意力定向和特征表征能力,同时跳跃连接引入了压缩-激励(SE)注意力机制与视觉Transformer(ViT)来优化全局特征的学习,使用多头交叉注意力模块(MHCA)实现编码器与解码器的多尺度信息融合。MAT-UNet通过大量的仿真数据训练获得最优模型参数,并在多样化复杂形状和肺部仿真模型进行了实验验证。定量评估指标表明,该方法在重建图像中的均方根误差(RMSE)结果为2.3156,结构相似性指数(SSIM)结果为0.9437,可视化结果与真实分布和边界具有很好的一致性。实验结果表明,本文提出的MAT-UNet模型展现出良好的鲁棒性和泛化能力,相较于传统的单一卷积结构,集成Transformer结构提供了更精准的EIT图像重建效果,在无损测量与检测应用中存在很大的潜力和价值。 展开更多
关键词 电阻抗层析成像 卷积注意力机制 SE-ViT连接 多头交叉注意力模块 u型卷积网络 无损测量
下载PDF
基于U-Net和SVM的圆形工业品形变缺陷检测方法 被引量:3
14
作者 王佳豪 周哲海 兰永亮 《激光杂志》 北大核心 2020年第11期25-31,共7页
针对圆形工业品形变缺陷检测人工检测受主观经验影响大,抽样率低、实时性差等问题,提出了一种基于U型卷积神经网络(U-Net)结合支持向量机(SVM)的工业缺陷检测的快速准确方法。该方法先通过U型卷积神经网络对图像的目标检测区域进行图像... 针对圆形工业品形变缺陷检测人工检测受主观经验影响大,抽样率低、实时性差等问题,提出了一种基于U型卷积神经网络(U-Net)结合支持向量机(SVM)的工业缺陷检测的快速准确方法。该方法先通过U型卷积神经网络对图像的目标检测区域进行图像分割,得到目标区域的二值图像;再采用Sobel边缘检测算法获取边缘点,采用最小二乘法确定圆心、半径并计算定位误差;最后,将半径和定位误差作为特征参量进行SVM二分类,从而判别圆形工业品是否存在形变缺陷。以常见的易拉罐拉环盖圆形锚点缺陷为例,验证了本方法的有效性。实验结果表明,在锚点变形严重和存在光照不均匀的情况下,该方法仍可实现拉环盖锚点形变缺陷准确快速的检测,通过对小样本图像数据进行检测评估,检测准确率达到96.88%,满足工业缺陷检测的要求。 展开更多
关键词 u卷积神经网络 边缘提取 最小二乘圆检测 支持向量机 缺陷检测
下载PDF
基于U-Net的珊瑚礁遥感影像自动分类 被引量:2
15
作者 王桓 吴迪 +1 位作者 左秀玲 王浩 《海洋测绘》 CSCD 北大核心 2023年第1期63-67,共5页
珊瑚礁遥感影像分类是珊瑚礁遥感监测的关键性基础技术,对珊瑚礁生态保护与制图应用起着重要的支撑作用。提出一种新的基于U-Net模型的珊瑚礁遥感影像自动分类方法,该方法使用小样本珊瑚礁影像训练即可得到分类精度较高的模型,克服了一... 珊瑚礁遥感影像分类是珊瑚礁遥感监测的关键性基础技术,对珊瑚礁生态保护与制图应用起着重要的支撑作用。提出一种新的基于U-Net模型的珊瑚礁遥感影像自动分类方法,该方法使用小样本珊瑚礁影像训练即可得到分类精度较高的模型,克服了一般深度学习模型需要海量样本数据训练的缺陷。基于LandsatTM影像,对南海珊瑚礁进行遥感分类,其准确度潟湖坡为78%,向海坡为85%,珊瑚礁、海洋、陆地均大于95%,所有类别的边界轮廓指数大于92%。因此,这种自动分类方法比传统的珊瑚礁遥感影像分类方法精度更高,分类速度更快。 展开更多
关键词 珊瑚礁遥感 影像自动分类 u卷积神经网络(u-Net) 深度学习 Landsat-8卫星
下载PDF
融合残差Inception与双向ConvGRU的皮肤病变智能分割
16
作者 顾敏杰 李雪 陈思光 《数据采集与处理》 CSCD 北大核心 2023年第4期937-946,共10页
由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分... 由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分割模型。首先设计了一种云边协同的皮肤病变智能分割服务网络模型,通过该网络模型,用户可以获得快速、准确的分割服务;其次,构建了一种新的皮肤病变智能分割模型,通过融合残差Inception与双向ConvGRU,该模型能融合不同尺度特征,提高模型特征提取能力,并能充分利用底层特征与语义特征之间的关系,捕获更丰富的全局上下文信息,取得更好的分割性能;最后,在ISIC 2018数据集上的实验结果表明,所提出的智能分割模型与近期提出的几种U-Net扩展模型相比,取得了更高的准确率与Jaccard系数。 展开更多
关键词 皮肤病 图像分割 残差网络 u卷积神经网络 卷积门控循环单元
下载PDF
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
17
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 u-shaped attention network structure of MAAuNet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
下载PDF
复杂背景下的路面裂缝检测的关键技术 被引量:5
18
作者 杨泽 孙静宇 《计算机工程与设计》 北大核心 2023年第5期1519-1527,共9页
针对目前路面裂缝检测方法在复杂环境下识别率较低、鲁棒性较差的问题,提出一种改进网络CBAM-Res-GhostNet对路面裂缝实现有效分类。在卷积神经网络中引入Ghost模块和改进残差模块,加入卷积注意力,避免梯度消失和过拟合现象,实现对路面... 针对目前路面裂缝检测方法在复杂环境下识别率较低、鲁棒性较差的问题,提出一种改进网络CBAM-Res-GhostNet对路面裂缝实现有效分类。在卷积神经网络中引入Ghost模块和改进残差模块,加入卷积注意力,避免梯度消失和过拟合现象,实现对路面裂缝的准确判断;在此基础上,提出一种改进网络Self-Attention-UNet对路面裂缝区域进行高精度分割,引入自注意力机制增强模型裂缝特征提取能力,提高分割精度。在EdmCrack600数据集上,所提分类算法准确度达到99.13%,分割算法的精准率和F1值分别为86.85%和86.6%,相较原始方法具有更好的分类分割效果。 展开更多
关键词 计算机视觉 裂缝检测 深度学习 图像处理 u卷积神经网络 注意力 残差模块
下载PDF
基于深度学习和形态学的海底沙波谷线提取
19
作者 刘晓亚 韩留生 +3 位作者 李正元 范俊甫 张大富 孙广伟 《海洋测绘》 CSCD 北大核心 2023年第2期65-68,73,共5页
为了提高基于侧扫声纳图像提取海底沙波谷线这种类别不均衡线状地物的精度,提出了一种深度学习与数学形态学相结合的方法。该方法采用Dice损失函数和添加批标准化(batch normalization, BN),对U型卷积神经网络模型(U-Net)进行改进;结合... 为了提高基于侧扫声纳图像提取海底沙波谷线这种类别不均衡线状地物的精度,提出了一种深度学习与数学形态学相结合的方法。该方法采用Dice损失函数和添加批标准化(batch normalization, BN),对U型卷积神经网络模型(U-Net)进行改进;结合数学形态学中的闭运算和骨架法,对沙波谷线轮廓进行修复并提取线性特征;进一步将改进的U-Net模型与支持向量机(support vector machine, SVM)、随机森林(random forest, RF)、面向对象分类以及U-Net模型进行精度对比验证。结果表明:改进的U-Net模型能够解决类别不均衡的问题,实现沙波谷线的高精度提取,该方法对海底沙波的研究具有重要的科学与工程应用价值。 展开更多
关键词 海底地形测量 侧扫声纳 提取海底沙波谷线 u卷积神经网络 数学形态学 Dice损失函数
下载PDF
基于通道混洗和注意力机制的轻量缺陷检测算法
20
作者 黄轶凡 黄之文 金涛 《建模与仿真》 2024年第1期976-985,共10页
缺陷检测在制造业中扮演着确保产品质量和效率的关键角色。由于缺陷通常没有固定形状,并且受光照影响较大,因此基于图像的高精度缺陷检测成为一项极具挑战性的任务。本文针对缺陷图像的特点,提出了一种结合了通道混洗和注意力机制的U型... 缺陷检测在制造业中扮演着确保产品质量和效率的关键角色。由于缺陷通常没有固定形状,并且受光照影响较大,因此基于图像的高精度缺陷检测成为一项极具挑战性的任务。本文针对缺陷图像的特点,提出了一种结合了通道混洗和注意力机制的U型结构的卷积神经网络。首先在跳跃连接中加入注意力门机制来提高网络的泛化能力;其次,针对上采样中容易产生边缘轮廓失真的问题,采用了混合损失计算;最后,因使用了效率更高的编码解码器,在模型参数和浮点运算数较低的情况下,所提出的模型MIoU和F1指标达到了91.89,94.67和64.82,72.93。与FCN、U-Net、U-Net++进行了比较,结果表明所提出的方法在表面缺陷检测领域优于相关方法。 展开更多
关键词 表面缺陷检测 图像分割 u卷积神经网络 注意力机制 混合损失计算
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部