期刊文献+
共找到517,551篇文章
< 1 2 250 >
每页显示 20 50 100
A 3D attention U-Net network and its application in geological model parameterization
1
作者 LI Xiaobo LI Xin +4 位作者 YAN Lin ZHOU Tenghua LI Shunming WANG Jiqiang LI Xinhao 《Petroleum Exploration and Development》 2023年第1期183-190,共8页
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not... To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results. 展开更多
关键词 reservoir history matching geological model parameterization deep learning attention mechanism 3D u-net
下载PDF
ICA-Unet:An improved U-net network for brown adipose tissue segmentation
2
作者 Haolin Wang Zhonghao Wang +4 位作者 Jingle Wang Kang Li Guohua Geng Fei Kang Xin Cao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期70-80,共11页
Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated w... Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT. 展开更多
关键词 PET/CT segmentation of brown adipose tissue u-net medical image processing deep learning
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
3
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning Convolutional Neural networks (CNN) Seismic Fault Identification u-net 3D Model Geological Exploration
下载PDF
U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images
4
作者 Ananthakrishnan Balasundaram Ayesha Shaik +1 位作者 Japmann Kaur Banga Aman Kumar Singh 《Computers, Materials & Continua》 SCIE EI 2024年第4期779-799,共21页
Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent... Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%. 展开更多
关键词 Smoke plume ResNet-50 u-net geo satellite images early warning global monitoring
下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
5
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
6
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
7
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
一种改进U-Net网络的心电图分类算法研究 被引量:1
8
作者 王建荣 尉向前 +2 位作者 辛彬彬 高睿丰 李国翚 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期142-149,共8页
基于CPSC-2018十二导联数据,提出了一种U-Net网络和注意力机制结合的心电图分类算法。首先,针对数据集数据长度长短不一的问题,对数据进行等长处理和归一化处理。然后,利用U-Net网络中跳层连接和编码解码方式,对预处理后较长的数据进行... 基于CPSC-2018十二导联数据,提出了一种U-Net网络和注意力机制结合的心电图分类算法。首先,针对数据集数据长度长短不一的问题,对数据进行等长处理和归一化处理。然后,利用U-Net网络中跳层连接和编码解码方式,对预处理后较长的数据进行处理。在U-Net网络解码的最后一层加入注意力机制对抗噪声,提升模型的有效信息关注度和准确性。最后,利用CPSC-2018数据集进行验证。实验结果表明:所提模型能够取得较好的分类效果,识别房颤(AF)和右束支传导阻滞(RBBB)心律失常的精准率、召回率、F1值都可以达到90%以上,平均F1值可以达到82.5%。 展开更多
关键词 心律失常 心电图 u-net网络 注意力机制
下载PDF
基于改进U-net的少样本煤岩界面图像分割方法 被引量:1
9
作者 卢才武 宋义良 +3 位作者 江松 章赛 王懋 纪凡 《金属矿山》 CAS 北大核心 2024年第1期149-157,共9页
煤岩图像语义分割技术是煤岩界面识别的重要研究方向,现有的语义分割模型通常依赖于大样本数据集进行训练,然而目前已标注的煤岩图像数据样本难以获取,并且缺乏公开数据集。针对以上问题,提出了一种基于改进U-net模型的样本煤岩界面图... 煤岩图像语义分割技术是煤岩界面识别的重要研究方向,现有的语义分割模型通常依赖于大样本数据集进行训练,然而目前已标注的煤岩图像数据样本难以获取,并且缺乏公开数据集。针对以上问题,提出了一种基于改进U-net模型的样本煤岩界面图像分割模型。将裁剪后具有更强特征提取能力且结构上更为简单的VGG16替换U-net的原始骨干特征提取网络,提升对图像信息的特征提取能力并获得更快的训练速度,在U-net网络的跳跃连接和解码器上采样部分引入注意力机制模块,对提取的特征层进行处理,提升模型对煤岩界面图像关键特征的提取能力,提高分割精度。使用迁移学习方法对改进的模型进行预训练,提高模型泛化能力同时避免过拟合,使模型更适用于小样本数据集训练。通过使用自制的煤岩界面数据集对所改进的网络模型性能进行验证,并将该模型与经典Unet、DeepLabv3+、PspNet、HrNet网络模型进行了对比。试验结果表明:在同样使用由125幅煤岩界面图片构建的小样本数据集进行训练的情况下,所提改进模型相较于经典U-net模型在分割精确度和检测效率方面都有显著提升,模型精确度提高了1.84%,平均交并比提高了5.34%,类别平均像素准确率提高了0.48%,检测速度增幅为5.3%。同时,与其他网络模型相比,所提改进模型在小样本煤岩界面图像的语义分割中优势显著,表明所提改进思路的有效性。 展开更多
关键词 煤岩识别 语义分割 少样本学习 u-net 深度学习 机器视觉技术
下载PDF
基于残差U-Net和自注意力Transformer编码器的磁场预测方法 被引量:1
10
作者 金亮 尹振豪 +2 位作者 刘璐 宋居恒 刘元凯 《电工技术学报》 EI CSCD 北大核心 2024年第10期2937-2952,共16页
利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型... 利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型,得到深度学习训练所需的数据集;然后将Transformer模块与U-Net模型结合,并引入短残差机制建立ResUnet-Transformer模型,通过预测图像的像素实现磁场预测;最后通过Targeted Dropout算法和动态学习率调整策略对模型进行优化,解决拟合问题并提高预测精度。计算实例证明,ResUnet-Transformer模型在PMSM和AMT数据集上测试集的平均绝对百分比误差(MAPE)均小于1%,且仅需500组样本。该文提出的磁场预测方法能减少实际工况和多工况下精细模拟和拓扑优化的时间和资源消耗,亦是虚拟传感器乃至数字孪生的关键实现方法之一。 展开更多
关键词 有限元方法 电磁场 深度学习 u-net TRANSFORMER
下载PDF
基于U-net神经网络的油浸式变压器绕组流-热耦合快速计算
11
作者 刘云鹏 高艺倩 +4 位作者 刘刚 胡万君 王文浩 王博闻 高成龙 《中国电机工程学报》 EI CSCD 北大核心 2024年第7期2897-2909,I0032,共14页
该文针对采用传统数值方法进行大型油浸变压器绕组温升仿真时间较长的问题,提出一种基于U-net神经网络训练的快速计算方法,可以迅速地预测变压器绕组温升及热点。首先,根据流热耦合原理筛选输入变量,并运用流热耦合方法计算不同工况下... 该文针对采用传统数值方法进行大型油浸变压器绕组温升仿真时间较长的问题,提出一种基于U-net神经网络训练的快速计算方法,可以迅速地预测变压器绕组温升及热点。首先,根据流热耦合原理筛选输入变量,并运用流热耦合方法计算不同工况下的输出结果,并将之制作成训练集和测试集。同时,详细讨论3个对网络训练影响最显著的超参数;其次,将归一化后的训练集输入U-net神经网络进行训练,并设置超参数最佳组合;最后,将预测集输入训练好的模型进行预测计算及反归一化操作,预测绕组热点与Fluent仿真结果相差仅0.44 K,单次仿真时间从200 s缩短为0.07 s。预测结果与实验温度平均误差最大为2.31 K,最小为0.98 K,预测方差为0.31左右。结果表明:该方法可用于快速获得油浸式变压器绕组的温度及热点,可满足变压器温度热点数字孪生的实时性仿真要求。 展开更多
关键词 u-net神经网络 流热耦合 绕组温升 快速计算 数字孪生
下载PDF
改进的U-Net算法在管道内焊缝缺陷图像分割中的应用
12
作者 李巍 李太江 +4 位作者 杨略 蔡焕捷 李蕾 陈盛广 曹小龙 《焊接》 2024年第11期73-80,共8页
【目的】图像处理技术在管道焊缝识别系统中的应用已经成为了机器视觉在焊缝检测中主要应用方向。对焊缝表面缺陷进行识别是应用的关键技术。为了提高焊缝表面缺陷识别效果,需要对焊缝图像进行有效分割。针对管道内焊缝边界区域可能出... 【目的】图像处理技术在管道焊缝识别系统中的应用已经成为了机器视觉在焊缝检测中主要应用方向。对焊缝表面缺陷进行识别是应用的关键技术。为了提高焊缝表面缺陷识别效果,需要对焊缝图像进行有效分割。针对管道内焊缝边界区域可能出现的模糊不清,导致分割结果不准确的现象,需要采取相应的技术有段进行改善。【方法】针对管道内焊缝缺陷图像分割问题,提出一种改进的U-Net图像分割方法。以管道内焊缝图像为研究对象,采用改进型U-Net网络对管道内焊缝缺陷图像进行识别和分割,经过网络训练和模型测试后,将分割结果与原U-Net网络、FCN网络进行对比。【结果】结果表明,在改进型U-Net网络对管道内焊缝缺陷图像的分割中,相似性系数(Dice)、平均交并比(mIoU)两项评价指标分别达到0.8420和0.8514,相较于FCN网络分别提升13.44%和8.68%,相较于原U-Net网络分别提升6.51%和3.31%。【结论】因此,该文提出的改进后的U-Net网络对管道内焊缝缺陷的识别和分割具有更好的效果,也为研究管道焊缝缺陷识别系统提供可靠基础,减少人工检测的成本和时间。 展开更多
关键词 图像分割 神经网络 u-net 焊缝缺陷
下载PDF
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法
13
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进Faster R-CNN 改进u-net
下载PDF
基于U-net和胶囊网络的图像语义分割结构研究
14
作者 刘向举 赵慧勐 方贤进 《重庆工商大学学报(自然科学版)》 2024年第5期65-71,共7页
目的 针对苹果病害中比较常见的症状——花叶病,尤其在昼夜温差大的条件下发病迅速,落叶率提高,造成苹果大面积减产,产生巨大的经济损失;对于花叶病病斑数量太多,尺度不一的影响,从而造成病害识别准确率较低等问题,提出了一种引入迁移... 目的 针对苹果病害中比较常见的症状——花叶病,尤其在昼夜温差大的条件下发病迅速,落叶率提高,造成苹果大面积减产,产生巨大的经济损失;对于花叶病病斑数量太多,尺度不一的影响,从而造成病害识别准确率较低等问题,提出了一种引入迁移学习和胶囊网络的方法,以提高病害识别率。方法 首先对获得的花叶病数据集进行扩充、数据增强等处理,并利用Labelme工具对图像进行标注,分别标记出病斑区域和叶片区域;其次将训练好的VGG16模型权重通过迁移学习技术移至U-net中编码部分,并引入胶囊网络,使得整个网络具有更强的特征提取能力;然后对VGG16模型、胶囊网络部分进行训练,最后将训练好的网络模型进行语义分割并输出测试的结果。结果 实验结果表明,原始数据集的准确率为87.51%,引入迁移学习后的准确率提升至91.78%,提升了4.88%;引入胶囊网络的准确率提升至90.04%,提升了2.89%;而引入迁移学习和胶囊网络之后,准确率提升至93.42%,提升了6.75%。并且模型每一轮的训练时间也在引入了迁移学习后提升了2 s。结论 据实验结果可以证明模型方法引入迁移学习和胶囊网络后,相较于传统模型在识别准确率方面有了一定的提升,其次也减少了每一轮的模型训练时间,总体分割性能较好。 展开更多
关键词 病害识别 花叶病 病斑 VGG16 u-net 胶囊网络
下载PDF
基于AttentionR2U-net的岩石(体)关键节理智能识别与参数提取
15
作者 孙浩 代宗晟 +1 位作者 金爱兵 陈岩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期101-110,共10页
针对岩石(体)表面复杂节理网中关键节理的智能识别与参数提取问题,提出一种基于AttentionR2U-net网络与节理几何特征模型耦合识别的方法.在R2U-net网络的基础上引入注意门(attentiongate)改进网络,通过定性与定量的方法对边坡节理图像... 针对岩石(体)表面复杂节理网中关键节理的智能识别与参数提取问题,提出一种基于AttentionR2U-net网络与节理几何特征模型耦合识别的方法.在R2U-net网络的基础上引入注意门(attentiongate)改进网络,通过定性与定量的方法对边坡节理图像和混凝土、龟裂土、常见脆性岩石裂隙图像的识别结果分别作准确性及泛化能力检验;利用AttentionR2U-net网络耦合节理几何特征的方法识别关键节理,提取原始节理和关键节理的几何参数并对其迹长、面积及倾角作差异性分析.研究结果表明:针对岩石(体)节理识别,本文算法的Dice相似系数从U-net网络的0.965提升至0.990,且明显优于传统算法,故本文算法在岩石(体)节理识别上具有更强的可靠性与优越性;针对混凝土、龟裂土和大理岩、花岗岩、砂岩等脆性岩石裂隙的识别,本文算法的Dice相似系数均在0.953以上,故本文算法具有较强的泛化能力.与原始节理网络相比,关键节理网络优势迹长由0.732m显著增大至1.835m,节理倾角分布形式和优势倾角组均不变,优势迹长和倾角的节理占比均显著增大. 展开更多
关键词 岩石(体) 关键节理 AttentionR2u-net网络 智能识别 参数提取
下载PDF
基于改进U-Net的根系表型参数测量系统
16
作者 赵亚凤 刘晓璐 +3 位作者 王冬冬 王孟雪 宋文华 胡峻峰 《森林工程》 北大核心 2024年第4期127-136,共10页
为解决背景噪声干扰下,从微根管采集的原位根系图像中难以直接提取准确的表型参数问题,提出一种基于改进U-Net的微根管根系表型参数测量系统。在U-Net网络中引入优化后的空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)... 为解决背景噪声干扰下,从微根管采集的原位根系图像中难以直接提取准确的表型参数问题,提出一种基于改进U-Net的微根管根系表型参数测量系统。在U-Net网络中引入优化后的空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)和高效通道注意力模块(Efficient Channel Attention,ECA),增大感受野,提升模型捕捉根系细节特征的能力,获取精确的根系分割图像。结果表明,改进的U-Net模型平均交并比和平均像素精度分别为87.07%和91.85%,相较原始U-Net分别提高了2.49%和2.3%。与WinRHIZO根系分析软件测量值相比,根长度和面积决定系数分别为0.951 8和0.984 9,Spearman相关系数分别为0.972 5和0.975 7,可以实现根系长度和面积的准确测量。 展开更多
关键词 根系表型 微根管 图像分割 参数测量 u-net
下载PDF
基于U-NET的双分支海上SAR溢油检测模型
17
作者 盛辉 曹文俊 +3 位作者 刘善伟 王大伟 杨俊芳 张杰 《海洋科学》 CAS CSCD 北大核心 2024年第7期1-10,共10页
为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意... 为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意力门融合纹理信息和灰度信息。实验利用1景海丝一号(HISEA-1)SAR数据构建样本训练集进行AW-net模型训练,分别应用1景HISEA-1 SAR数据和1景Radarsat-2SAR数据开展模型测试,溢油检测准确率均优于U-NET、AttentionU-NET和FCN等语义分割模型,说明该模型具有较强的强鲁棒性和应用潜力。 展开更多
关键词 溢油检测 SAR u-net 注意力门 双分支编码器
下载PDF
面向青花瓷碎片图像的U-Net++拼接网络
18
作者 张海波 寇姣姣 +3 位作者 杨兴 海琳琦 周明全 耿国华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第3期379-387,共9页
针对现有图像拼接方法存在拼接处伪影以及非重叠区域内容失真,导致较低的准确性和鲁棒性的问题,提出一种基于U-Net++消除伪影的青花瓷碎片图像拼接方法.首先估计待拼接图像单应性矩阵;然后将单应性矩阵应用于结构拼接阶段,得到图像粗拼... 针对现有图像拼接方法存在拼接处伪影以及非重叠区域内容失真,导致较低的准确性和鲁棒性的问题,提出一种基于U-Net++消除伪影的青花瓷碎片图像拼接方法.首先估计待拼接图像单应性矩阵;然后将单应性矩阵应用于结构拼接阶段,得到图像粗拼接结果;最后以图像粗拼接结果作为先验信息,在内容校正阶段改进现有的U-Net,利用U-Net++细化粗拼接结果,得到最终图像精确拼接.以青花瓷碎片图像数据集与相关经典方法进行实验的结果表明,在3个评价指标中,所提方法的峰值信噪比提高约13%,均方根误差降低约33%,均方误差降低57%左右;该方法具有较小的误差比,不仅能够提高图像拼接质量,而且表现出较好的鲁棒性. 展开更多
关键词 图像拼接 u-net++ 单应性矩阵估计 内容校正 青花瓷碎片
下载PDF
基于改进U-Net的轻量级眼底病变分割算法设计
19
作者 刘拥民 张毅 +1 位作者 欧阳凌轩 石婷婷 《电子测量技术》 北大核心 2024年第3期127-134,共8页
精准的糖尿病视网膜病变的分割是实现视网膜病变自动诊断的前提条件和关键步骤,然而现有大部分的分割模型存在着参数量大、模型训练效果不理想、甚至是无法正常处理数据集等局限性。为此,在原U-Net网络中加入改进的Ghost卷积模块与多尺... 精准的糖尿病视网膜病变的分割是实现视网膜病变自动诊断的前提条件和关键步骤,然而现有大部分的分割模型存在着参数量大、模型训练效果不理想、甚至是无法正常处理数据集等局限性。为此,在原U-Net网络中加入改进的Ghost卷积模块与多尺度特征融合模块,提出一种改进U-Net眼底病变分割图像的算法。该模型能以少量的参数量、较低的计算复杂度获得良好的分割结果。利用GhostModel替换原始卷积,设计出Ghost卷积与Ghost下采样卷积模块,在保证准确度的同时降低参数量;设计出一种轻量级的Half-UNet多尺度特征融合模块来获取多尺度信息,针对不同尺度病变目标,引入CBAM注意力机制以改善其适应性,从而更好的提取细小的病变信息。改进后的模型在e_optha与IDRiD两个公开数据集上的mIoU分别为61.42%、61.84%,F1-Score分别为70.59%、69.41%。模型参数量、FLOPs分别仅为5.48M、35.46GMac,较U-Net、Att-UNet等模型更加精简,分割精度更高。 展开更多
关键词 糖尿病视网膜病变 图像分割 Ghost卷积 u-net
下载PDF
应用自适应注意力机制U-net的地震数据高分辨处理
20
作者 赵明 赵岩 +2 位作者 沈东皞 王建强 代显才 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期675-683,共9页
随着油气勘探开发的不断深入,薄储层与岩性油气藏逐渐成为重要的勘探目标,这也对地震资料的分辨率提出了更高的要求。文中提出了一种基于自适应注意力机制的U-net地震数据高分辨处理方法。该方法首先利用U-net结构学习地震数据的特征表... 随着油气勘探开发的不断深入,薄储层与岩性油气藏逐渐成为重要的勘探目标,这也对地震资料的分辨率提出了更高的要求。文中提出了一种基于自适应注意力机制的U-net地震数据高分辨处理方法。该方法首先利用U-net结构学习地震数据的特征表示,通过下采样过程的编码器提取地震数据的抽象特征,然后通过上采样的解码器进行特征重建和细化。在上采样的过程中引入了注意力机制,用于自适应地调整网络对不同地震特征的关注程度,网络能够更加有效地捕捉到地震数据更多的细节和特征。Marmousi模型合成地震记录和实际数据实验结果表明,新网络比原U-net误差更小、更稳定,可有效提高预测精度,实现对地震数据的高分辨率处理。 展开更多
关键词 地震数据处理 高分辨率 u-net 注意力机制 自适应
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部