期刊文献+
共找到1,477篇文章
< 1 2 74 >
每页显示 20 50 100
Increase Ultrasonics Cleaning Efficiency of Electronics Modules 被引量:1
1
作者 Vladimir L. Lanin Vladimir S. Tomal 《Engineering(科研)》 2013年第2期191-195,共5页
The new approach is offered for the cleaning applications of electronics modules. The modular systems of the distributed ultrasonics converters, which are established in chessboard order, provide the uniformity cavita... The new approach is offered for the cleaning applications of electronics modules. The modular systems of the distributed ultrasonics converters, which are established in chessboard order, provide the uniformity cavitation fields in ultrasonic bath. The effect of periodic deviation of ultrasonics frequency created the directed acoustic currents in the liquid, witch increase removal pollution process. The technological parameters of automated ultrasonics cleaning lines as concentration SAS, temperature of washing solutions, and ultrasonics cavitation power are optimized. 展开更多
关键词 ultrasonics CLEANING ELECTRONICS MODULES CAVITATION FIELDS
下载PDF
Non-Contact Velocity Measurement of Japanese Cedar Columns Using Air-Coupled Ultrasonics
2
作者 Masumi Hasegawa Misaki Mori Junji Matsumura 《World Journal of Engineering and Technology》 2016年第1期45-50,共6页
The ultrasonic wave velocities of Japanese cedar columns were measured using a non-contact method. An air-coupled ultrasonic wave was propagated through the axial and lateral directions of wood. The velocities in the ... The ultrasonic wave velocities of Japanese cedar columns were measured using a non-contact method. An air-coupled ultrasonic wave was propagated through the axial and lateral directions of wood. The velocities in the axial direction (V<sub>L</sub>) showed the minimum values around the pith. The averaged V<sub>L</sub> increased from 3600 m/s towards the outside of measurement area and attained the maximum values (=4010 m/s). The velocities in the lateral direction (V<sub>RT </sub>) showed no tendency among measurement points. The averaged V<sub>RT </sub> was 1450 m/s. The velocities obtained using the non-contact method showed a significant positive relationship with those obtained using the contact method. The averaged ratio of V<sub>L</sub> to V<sub>RT </sub> was measured to be approximately 2.2 to 2.8. These ratios were in agreement with those from a contact method. These findings suggest that it is possible to measure the velocity in Japanese cedar columns with the non-contact method by using air-coupled ultrasonics. 展开更多
关键词 Air-Coupled ultrasonics VELOCITY Non-Contact Method Nodestructive Evaluation Japanese Cedar
下载PDF
Increase Activity Cavitations in Liquids and Melts at Ultrasonics Processing 被引量:1
3
作者 Vladimir L. Lanin 《Open Journal of Acoustics》 2013年第3期13-15,共3页
Increase of efficiency of cavitation processes in liquids and melts is reached by gas cavities saturation with the sizes not exceeding the resonant sizes of cavitation germs. Gas saturation of liquids and melts raises... Increase of efficiency of cavitation processes in liquids and melts is reached by gas cavities saturation with the sizes not exceeding the resonant sizes of cavitation germs. Gas saturation of liquids and melts raises level of cavitation pressure upon 20% - 25% that intensifies US processing: cleaning, soldering and metallization. 展开更多
关键词 ULTRASONIC CAVITATION Gas CAVITIES Liquids MELTS
下载PDF
Evaluation of defects in aluminum piston castings by using ultrasonics and computer tomography
4
作者 In-Sung Cho Jeong-Ho Hwang +2 位作者 Jin-Seok Yang Seung-Mok Yoo Chae-Ho Lim 《China Foundry》 SCIE CAS 2012年第3期275-278,共4页
Pistons used in automobile engines are made of aluminum alloy; and endurance of high pressure and high temperature is required. Recently, high strength pistons are needed to cope with the increase of pressure and temp... Pistons used in automobile engines are made of aluminum alloy; and endurance of high pressure and high temperature is required. Recently, high strength pistons are needed to cope with the increase of pressure and temperature in the engine cylinder. A high strength piston is possible when the piston casting has little or no casting defects, such as micro-pores and cracks. Generally the defects can be evaluated by non-destructive testing (NDT), and the most efficient ways for evaluation are using ultrasonics and computer tomography. In the present study, two NDT methods were compared and evaluated to investigate the defects in the aluminum piston castings. Artificial defects were machined by using very small drill bits with diameters 1, 0.5, 0.3, 0.2 and 0.1 mm. The defects were investigated by using an ultrasonic tester and a computer tomography system. Defects smaller than 0.3 mm may not be found by using the ultrasonic test, but the defects may be found by using the computer tomography system. The investigation conditions for detecting small defects and the scanning time for in-line defect analysis are discussed in the present study. 展开更多
关键词 PISTON ultrasonic test computer tomography ALUMINUM DEFECT
下载PDF
Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
5
作者 徐兆文 白雪 +2 位作者 马健 万壮壮 王超群 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期526-543,共18页
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la... Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound. 展开更多
关键词 laser-ultrasonics polycrystalline materials ultrasonic time-frequency characteristics grain size
下载PDF
Ultrasonic-Assisted Extraction of Fucoxanthin from Marine Macroalga Padina australis:Optimization,Bioactivity,and Structural Characterization
6
作者 L.Antony Catherine Flora Kirubanandan Shanmugam Renganathan Sahadevan 《Proceedings of Anticancer Research》 2024年第5期89-104,共16页
Macroalgae serve as a potential feedstock for fucoxanthin extraction.Fucoxanthin,a bioactive pigment found in the chloroplasts of marine algae,exhibits significant pharmacological properties.As a member of the caroten... Macroalgae serve as a potential feedstock for fucoxanthin extraction.Fucoxanthin,a bioactive pigment found in the chloroplasts of marine algae,exhibits significant pharmacological properties.As a member of the carotenoid family,fucoxanthin plays a crucial role in both the food and pharmaceutical industries.This research explores the effects of ultrasonics on the extraction of fucoxanthin from the marine macroalga Padina australis.In addition,various extraction techniques and the influence of solvents on the efficient separation of fucoxanthin from algae have been studied and compared.Using methanol,chloroform,and a combination of methanol and chloroform(1:1,v/v),conventional fucoxanthin extraction from Padina australis yielded 8.12 mg of fucoxanthin per gram of biomass.However,the ultrasonic-assisted extraction resulted in a significantly higher yield of 16.9 mg of fucoxanthin per gram of biomass,demonstrating that the use of ultrasonics enhances the extraction rate compared to conventional methods.Therefore,the efficient separation of fucoxanthin from Padina australis is highly dependent on ultrasonic-assisted extraction.The process conditions for the extraction were optimized to maximize the yield of fucoxanthin from seaweeds.The following parameters were selected for optimization studies:moisture content,particle size,mixing speed,extraction temperature,extraction duration,and solid-to-solvent ratio.The extracted fucoxanthin exhibited various biological activities,including antimicrobial and antioxidant properties,and its structure was elucidated through FTIR and NMR spectroscopy.Additionally,thin-layer chromatography of the crude algae extracts confirmed the presence of fucoxanthin in the marine algae.Given these findings,the optimized extraction process holds the potential for scaling up to large-scale fucoxanthin production.Fucoxanthin,as a potent pharmacological agent,offers promising applications in the treatment of various ailments. 展开更多
关键词 Marine algae FUCOXANTHIN ultrasonics Extraction OPTIMIZATION TLC DPPH Antimicrobial antioxidant activities
下载PDF
Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO_(2)Nanofluid 被引量:1
7
作者 Yusuf Suleiman Dambatta Changhe Li +8 位作者 Mohd Sayuti Ahmed A D Sarhan Min Yang Benkai Li Anxue Chu Mingzheng Liu Yanbin Zhang Zafar Said Zongming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期115-136,共22页
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ... Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics. 展开更多
关键词 Minimum quantity lubrication(MQL) Ultrasonic assisted grinding(UAG) Eco-friendly lubricants NANOFLUID GRINDING CERAMIC
下载PDF
超声空化在船舶与海洋工程中的应用
8
作者 黄潇 牛广贇 +3 位作者 谢元吉 陈效鹏 胡海豹 潘光 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期23-38,共16页
Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to so... Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications. 展开更多
关键词 Ultrasonic cavitation Cavitation mechanism Ultrasonic cleaning Ship and marine engineering Application status
下载PDF
Determining rock crack stress thresholds using ultrasonic through-transmission measurements
9
作者 Jiangwan He Mehdi Serati +1 位作者 Martin Veidt Arthur De Alwis 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期67-80,共14页
The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods ... The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed. 展开更多
关键词 ULTRASONIC Non-destructive testing Brittle rock Crack initiation VELOCITY AMPLITUDE FREQUENCY
下载PDF
Synergistically Improved Mechanical Properties and Thermal Conductivity of Hypoeutectic AlSiNiFeMg Alloy Prepared by Ultrasonic-assisted Casting
10
作者 ZHANG Wenda YUAN Xuan +4 位作者 ZHOU Yuli ZHONG Gu BAI Peikang WANG Hongfu LIU Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1565-1568,共4页
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and... We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively. 展开更多
关键词 Al-Si alloy mechanical property thermal conductivity ultrasonic treatment SOLIDIFICATION microstructure
下载PDF
Ultrasonic scalpel based on fusiform phononic crystal structure
11
作者 Sha Wang Junjie Shan Shuyu Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期302-310,共9页
In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod... In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification. 展开更多
关键词 phononic crystals ultrasonic scalpel bandgap vibration characteristics
下载PDF
Low palladium content CeO_(2)/ZnO composite for acetone sensor with sub-second response prepared by ultrasonic method
12
作者 CHEN Xu-jie XING Qiao-ling +2 位作者 TANG Xuan CAI Yong ZHANG Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2137-2149,共13页
In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium cont... In practical applications,noble metal doping is often used to prepare high performance gas sensors,but more noble metal doping will lead to higher preparation costs.In this study,CeO_(2)/ZnO-Pd with low palladium content was prepared by ultrasonic method with fast response and high selectivity for acetone sensing.With the same amount of palladium added,the selectivity coefficient of CeO_(2)/ZnO-Pd is 1.88 times higher than that of the stirred sensor.Compared with the pure PdO-doped CeO_(2)/ZnO-PdO material,the content of Pd in CeO_(2)/ZnO-PdO is about 30%of that in CeO_(2)/ZnO-PdO,but the selectivity coefficient for acetone is 2.56 times higher.The CeO_(2)/ZnO-Pd sensor has a higher response(22.54)to 50×10^(−6) acetone at 300℃and the selectivity coefficient is 2.57 times that of the CeO_(2)/ZnO sensor.The sensor has a sub-second response time(0.6 s)and still has a 2.36 response to 330×10^(−9) of acetone.Ultrasonic doping makes Pd particles smaller and increases the contact area with gas.Meanwhile,the composition of n-p-n heterojunction and the synergistic effect of Pd/PdO improve the sensor performance.It shows that ultrasonic Pd doping provides a way to improve the utilization rate of doped metals and prepare highly selective gas sensors. 展开更多
关键词 low palladium sub-second responce ultrasonic method acetone sensor heterojunction
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
13
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
A Novel On-Site-Real-Time Method for Identifying Characteristic Parameters Using Ultrasonic Echo Groups and Neural Network
14
作者 Shuyong Duan Jialin Zhang +2 位作者 Heng Ouyang Xu Han Guirong Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期215-228,共14页
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness... On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment. 展开更多
关键词 Parameter identification Ultrasonic echo group High-precision modeling Artificial neural network NDT
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
15
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 Coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
Damage Evolution of Ballastless Track Concrete Exposed to Flexural Fatigue Loads:The Application of Ultrasonic Pulse Velocity,Impact-echo and Surface Electrical Resistance Method
16
作者 杨志强 李化建 +4 位作者 WEN Jiaxing DONG Haoliang HUANG Fali WANG Zhen YI Zhonglai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期353-363,共11页
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab... In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads. 展开更多
关键词 ballastless track fatigue damage ultrasonic pulse velocity IMPACT-ECHO surface electrical resistance
下载PDF
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
17
作者 Zhao-yang Yin Qi-chi Le +3 位作者 Yan-chao Jiang Da-zhi Zhao Qi-yu Liao Qi Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u... A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20). 展开更多
关键词 dual-frequency ultrasonic numerical model acoustic pressure spatial interaction magnesium alloy
下载PDF
Source localization based on field signatures:Laboratory ultrasonic validation
18
作者 Mahmoud Eissa Dmitry Sukhanov 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期47-56,共10页
Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase d... Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots. 展开更多
关键词 Base station Field signature FINGERPRINTS Localization Ultrasonic frequencies
下载PDF
Theoretical Modeling and Surface Roughness Prediction of Microtextured Surfaces in Ultrasonic Vibration-Assisted Milling
19
作者 Chenbing Ni Junjie Zhu +3 位作者 Youqiang Wang Dejian Liu Xuezhao Wang Lida Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期163-183,共21页
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te... Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM. 展开更多
关键词 Theoretical modeling Microtextured surface Ultrasonic vibration-assisted milling Cubic spline interpolation Surface roughness
下载PDF
Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity
20
作者 Nianwei Xu Renke Kang +4 位作者 Bi Zhang Yuan Zhang Chenxu Wang Yan Bao Zhigang Dong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期458-475,共18页
Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),... Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%. 展开更多
关键词 surface integrity fatigue strength Inconel 718 ultrasonic assisted grinding
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部