The characterization of Indian bituminous and subbituminous coal was performed by UVVisible– NIR spectroscopy. Chemical leaching with varying concentration of hydrofluoric acid was conducted on both the samples. Elec...The characterization of Indian bituminous and subbituminous coal was performed by UVVisible– NIR spectroscopy. Chemical leaching with varying concentration of hydrofluoric acid was conducted on both the samples. Electronic absorption at this region was higher for higher ranked coals. Chemical leaching increased electronic transitions in subbituminous coal with maximum transitions for HF (10%) leached samples. The absorption maximum of benzeneoxygen system was found between 235-270 nm and was showing a red shift with leaching. The characteristic naphthalene ring systems (220 & 280 nm) were masked by the absorption regions of monoaromatic rings;indicating the content of napthalenoid hydrocarbon was very low. The bands observed in the visible region (450nm) were attributed to SO2 in the sample and was showing a red shift. The weak band at the 680 nm was attributed to the Ⅱ-Ⅱ* electronic transitions of the polynuclear aromatic hydrocarbons which also showed red shift with leaching. It was found that the ash content is reduced by 87.5% & 76.2% in bituminous and subbituminous coal respectively with HF (30%) leaching.展开更多
Nature has been inspiring material researchers to fabricate biomimetic functional devices for various applications, and shape-memory polymer materials(SMPMs) have received tremendous attention since the promising inte...Nature has been inspiring material researchers to fabricate biomimetic functional devices for various applications, and shape-memory polymer materials(SMPMs) have received tremendous attention since the promising intelligent materials possess more advantages over others for the fabrication of biomimetic functional devices. As is well-known, SMPMs can be stimulated by heat, electricity, magnetism, pH, solvent and light. From the viewpoint of practical applications, ultraviolet(UV)-visible(Vis)-near infrared(NIR) light-responsive SMPMs are undoubtedly more advantageous. However, up to now, UV-Vis-NIR light-deformable SMPMs by combining photothermal and photochemical effects are still rarely reported. Here we designed a UV-Vis-NIR light-deformable SMP composite film via incorporating a liquid crystal(LC) mixture and graphene oxide(GO) into a shape-memory polyurethane matrix. The elongated composite films exhibited interesting photomechanical bending deformations with different light-triggered mechanisms,(1) photochemically induced LC phase transition upon UV exposure,(2) photochemically and photothermally induced LC phase transition upon visible-light irradiation,(3) photothermally triggered LC phase transition and partial stress relaxation upon low-intensity NIR exposure. All the deformed objects could recover to their original shapes by high-intensity NIR irradiation.Moreover, the biomimetic circadian rhythms of acacia leaves and the biomimetic bending/spreading of fingers were successfully achieved, which could blaze a way in the field of biomimetic functional devices due to the excellent light-deformable and shape-memory properties of the SMP composite films.展开更多
The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanoc...The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.展开更多
The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experimen...The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experiments reveal that the maximum concentration of dispersed SWCNTs corresponds to the maximum UV-vis-NIR absorbance of the solution. With higher surfactant concentration the dispersion rate of SWCNTs increases and low temperature sonication is required to achieve maximum dispersion. Dispersion of higher SWCNT concentrations requires longer sonication time. For effective dispersion the optimal concentration of surfactant is 1.5 wt%, the concentration of SWCNTs that can be homogeneously dispersed in aqueous solution is about 0.4 mg/ml.展开更多
Pure bisthiourea cadmium bromide (BTCB) and 1 mole % L-alanine mixed bisthiourea cadmium bromide (LABTCB) single crystals have been grown by slow evaporation method. The grown crystals have been characterized by singl...Pure bisthiourea cadmium bromide (BTCB) and 1 mole % L-alanine mixed bisthiourea cadmium bromide (LABTCB) single crystals have been grown by slow evaporation method. The grown crystals have been characterized by single crystal XRD analysis, powder XRD analysis, FTIR analysis, UV-Vis-NIR analysis and SHG studies. XRD analysis confirms the crystalline nature of the materials. The addition of L-alanine changes the crystal structure from orthorhombic to tetragonal. The presence of various functional groups present in the pure BTCB and LABTCB crystals have been confirmed by FTIR analysis. The UV-Vis-NIR spectrum shows the transmission characteristics of the crystals. The SHG study depicts the nonlinear optical efficiency of the crystals.展开更多
Single crystals of 8-Hydroxyquinoline(8-HQ) and Benzophenone substituted 8-HydroxyQuinoline(B8-HQ) are grown by slow evaporation of acetone at room temperature. Coloured crystals of 8-HQ and B8-HQ with good optical qu...Single crystals of 8-Hydroxyquinoline(8-HQ) and Benzophenone substituted 8-HydroxyQuinoline(B8-HQ) are grown by slow evaporation of acetone at room temperature. Coloured crystals of 8-HQ and B8-HQ with good optical quality of dimensions 54 × 3 × 1.5 mm3 and 27 × 3 × 1 mm3 are harvested. Single crystal X-ray diffractometer was utilized to measure the unit cell parameters and to confirm the crystal structure. The presence of various functional groups in the molecule was ascertained by FTIR spectral analysis. The cut-offwavelength of 8-HQ andB8-HQwas centered at 350 and 356 nm. The functional groups in the molecule are elucidated by 1H and 13C-NMR spectral analyses. Kurtz Perry test confirms the SHG in8-HQ andB8-HQ single crystals.展开更多
We have investigated the effects of chemical treatment on Single Wall Carbon Nanotube (SWCNT) before and after being modified with HNO3/H2SO4 by Raman, FTIR and UV-Vis-NIR spectroscopy. The results show successful car...We have investigated the effects of chemical treatment on Single Wall Carbon Nanotube (SWCNT) before and after being modified with HNO3/H2SO4 by Raman, FTIR and UV-Vis-NIR spectroscopy. The results show successful carboxylation of the CNT sidewalls as observed from FTIR and UV-Vis-NIR spectroscopy. This successful functionalization is achieved in 6-8 hrs of refluxing. We also report changes in the first and second order Raman spectra of SWNTs functionalized with oxygenated groups. During the experiment, we observe some important Raman features: Radial breathing mode (RBM), Tangential mode (G-band), and Disordered mode (D-band);which are affected due to the chemical oxidation of carbon nanotubes. We found that the ratio of D- to the G-band intensity (Id/Ig), increase after functionalization and the RBM mode in acid treated SWCNTs is almost disappeared.展开更多
The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by singl...The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by single crystal XRD. The optical absorption of the crystal was recorded using the UV-Vis-NIR spectrophotometer. The optical bandgap and optical constants of the material were determined by using absorption spectrum. The refractive index of the grown crystal has been determined using the Brewster angle method. The dielectric constant and dielectric loss were measured as a function of frequency and temperature for the grown crystal. Nonlinear optical properties were performed to confirm the SHG efficiency of the grown crystal. Hence, PTPT is an excellent NLO material with enhanced SHG efficiency required for important applications in the field of optoelectronic and photonics. This material exhibits NLO behaviour remarkably due to its better optical and dielectric properties.展开更多
ITO nanoparticles were obtained by combustion reaction of urea as fuel. The gel form structures were fired at 350°C in furnace for 20 min to yield powdery products and these products were calcined to five differe...ITO nanoparticles were obtained by combustion reaction of urea as fuel. The gel form structures were fired at 350°C in furnace for 20 min to yield powdery products and these products were calcined to five different temperatures from 100°C to 500°C for an hour to yield ITO powders. From the scanning electron microscopy (SEM) photographs and particle size analysis the average sizes of the cubic particle of powders are found to be less than 15 nm and less than 20 nm respectively. The ratio of doping concentration In/Sn is 90/10 and 80/20. The X-ray diffraction (XRD) data were evaluated by Scherer equation for the estimation of the average crystal size of the powders (less than 20 nm) for 90/10 and (less than 25 nm) for 80/20. The synthesized ITO powder characterized by XRD, UV-Vis-NIR and PL shows high specific surface area and possesses small primary crystallite size and good optical band gap.展开更多
A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 ...A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 × 4 ×2 mm3 have been grown from the conventional slow-cooling technique. The crystal structure of the compound has been solved from single crystal X-ray diffraction. The compound 2[C8H4O3]4-Li3+Na+ crystallizes in triclinic system with a space group of Pī having cell dimensions a = 7.5451(2) ? b = 9.8422(3) ? c = 25.2209(7) ? α = 80.299(2);β = 89.204(2);γ = 82.7770(10). FTIR measurement was carried out fo? LiNaP to study the vibrational structure of the compound. The various functional groups present in the molecule and the role of H-bonds in stabilizing the crystal structure of the compound have been explained. Optical absorption properties were studied for the grown crystal using UV-Vis-NIR spectrum. Thermal measurements were carried out for LiNaP to determine the thermal strength as well as to ascertain the hydrated nature of the crystal. Third order nonliner optical studies have also studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results of all studies have been discussed in detail.展开更多
A series of Yb:Nd:LiNbO3 crystals tridoped with various concentrations of Zr4+(1 mol.%, 2 mol.% and 4 mol.%) were grown by the Czochralski technique from the congruent melt. The X-ray powder diffraction, UV-Vis-N...A series of Yb:Nd:LiNbO3 crystals tridoped with various concentrations of Zr4+(1 mol.%, 2 mol.% and 4 mol.%) were grown by the Czochralski technique from the congruent melt. The X-ray powder diffraction, UV-Vis-NIR absorption spectra and IR transmittance spectra were measured to analyze the crystal composition and defect structure. The Zr4+, Yb3+ and Nd3+ ions in LiNbO3 crystal had two effects: volume compensation effect and ion valence state compensation effect. The Zr O2 doping threshold concentration was nearly 2.0 mol.%. The fluorescence emissions of Nd3+ ions and Yb3+ ions were observed under 808 nm excitation. The intensity of fluorescence emissions enhanced with the increasing of the Zr4+ doping concentrations. The Zr:Yb:Nd:LiNbO3 crystals with 4 mol.% doping concentration of Zr4+ ion revealed strong emission around 1 μm, which is of great significance for laser materials.展开更多
The photo-dimerization characteristics of coumarin pendants within amphiphilic random copolymer micelles in aqueous solution was comprehensively investigated using various selected wavelength light in the UV-Vis-NIR r...The photo-dimerization characteristics of coumarin pendants within amphiphilic random copolymer micelles in aqueous solution was comprehensively investigated using various selected wavelength light in the UV-Vis-NIR region. The time-dependent photo-dimerization degree (PD) changes in the photo-dimerization experiments showed saturating behaviors with intensity-independent of PDmax values at 28%, 44%, 92%, 85%, 36%, 35%, 32% and 31% for 254, 288, 320, 360, 400, 500, 650 and 900 nm irradiations, respectively. The irradiation experiments at 254 and 288 nm announced the occurring of an asymmetric equilibrium of photo-dimerization and photo-cleavage at the used conditions. Both the alternative irradiation cycles of 360 and 254 nm, 650 and 254 nm showed a partially, but evidently reversible photo-dimerization tendency.展开更多
This study focuses on the antimicrobial effects in silver-indium-tantalum oxide(Ag–InTaO)thin films.A stack of alternated layers of Ag(7 nm),In_(2)O_(3)(14 nm)and Ta_(2)O_(5)(10 nm)was sequentially deposited by sputt...This study focuses on the antimicrobial effects in silver-indium-tantalum oxide(Ag–InTaO)thin films.A stack of alternated layers of Ag(7 nm),In_(2)O_(3)(14 nm)and Ta_(2)O_(5)(10 nm)was sequentially deposited by sputtering.Then this as-deposited stack of films was rapidly annealed at three selected temperatures 700,800 or 900℃ for 5 min to allow the formation of complex oxides.Results from material characterization indicate that annealing help to form complex oxides,intermetallic compounds and Ag particles on the top surface.These features lead to the improved antimicrobial effect against E.Coli.under visible light by Ag–InTaO.展开更多
文摘The characterization of Indian bituminous and subbituminous coal was performed by UVVisible– NIR spectroscopy. Chemical leaching with varying concentration of hydrofluoric acid was conducted on both the samples. Electronic absorption at this region was higher for higher ranked coals. Chemical leaching increased electronic transitions in subbituminous coal with maximum transitions for HF (10%) leached samples. The absorption maximum of benzeneoxygen system was found between 235-270 nm and was showing a red shift with leaching. The characteristic naphthalene ring systems (220 & 280 nm) were masked by the absorption regions of monoaromatic rings;indicating the content of napthalenoid hydrocarbon was very low. The bands observed in the visible region (450nm) were attributed to SO2 in the sample and was showing a red shift. The weak band at the 680 nm was attributed to the Ⅱ-Ⅱ* electronic transitions of the polynuclear aromatic hydrocarbons which also showed red shift with leaching. It was found that the ash content is reduced by 87.5% & 76.2% in bituminous and subbituminous coal respectively with HF (30%) leaching.
基金financially supported by the National Natural Science Foundation of China(Nos.51373025,51773002 and 51921002)。
文摘Nature has been inspiring material researchers to fabricate biomimetic functional devices for various applications, and shape-memory polymer materials(SMPMs) have received tremendous attention since the promising intelligent materials possess more advantages over others for the fabrication of biomimetic functional devices. As is well-known, SMPMs can be stimulated by heat, electricity, magnetism, pH, solvent and light. From the viewpoint of practical applications, ultraviolet(UV)-visible(Vis)-near infrared(NIR) light-responsive SMPMs are undoubtedly more advantageous. However, up to now, UV-Vis-NIR light-deformable SMPMs by combining photothermal and photochemical effects are still rarely reported. Here we designed a UV-Vis-NIR light-deformable SMP composite film via incorporating a liquid crystal(LC) mixture and graphene oxide(GO) into a shape-memory polyurethane matrix. The elongated composite films exhibited interesting photomechanical bending deformations with different light-triggered mechanisms,(1) photochemically induced LC phase transition upon UV exposure,(2) photochemically and photothermally induced LC phase transition upon visible-light irradiation,(3) photothermally triggered LC phase transition and partial stress relaxation upon low-intensity NIR exposure. All the deformed objects could recover to their original shapes by high-intensity NIR irradiation.Moreover, the biomimetic circadian rhythms of acacia leaves and the biomimetic bending/spreading of fingers were successfully achieved, which could blaze a way in the field of biomimetic functional devices due to the excellent light-deformable and shape-memory properties of the SMP composite films.
基金supported by the National Natural Science the Foundations of China(Nos.11774171,11374159)the Fundamental Research Funds for the Central Universities(Nos.NJ20160105,NZ2015101)sponsored by Qing Lan Project of Jiangsu Province
文摘The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.
文摘The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experiments reveal that the maximum concentration of dispersed SWCNTs corresponds to the maximum UV-vis-NIR absorbance of the solution. With higher surfactant concentration the dispersion rate of SWCNTs increases and low temperature sonication is required to achieve maximum dispersion. Dispersion of higher SWCNT concentrations requires longer sonication time. For effective dispersion the optimal concentration of surfactant is 1.5 wt%, the concentration of SWCNTs that can be homogeneously dispersed in aqueous solution is about 0.4 mg/ml.
文摘Pure bisthiourea cadmium bromide (BTCB) and 1 mole % L-alanine mixed bisthiourea cadmium bromide (LABTCB) single crystals have been grown by slow evaporation method. The grown crystals have been characterized by single crystal XRD analysis, powder XRD analysis, FTIR analysis, UV-Vis-NIR analysis and SHG studies. XRD analysis confirms the crystalline nature of the materials. The addition of L-alanine changes the crystal structure from orthorhombic to tetragonal. The presence of various functional groups present in the pure BTCB and LABTCB crystals have been confirmed by FTIR analysis. The UV-Vis-NIR spectrum shows the transmission characteristics of the crystals. The SHG study depicts the nonlinear optical efficiency of the crystals.
文摘Single crystals of 8-Hydroxyquinoline(8-HQ) and Benzophenone substituted 8-HydroxyQuinoline(B8-HQ) are grown by slow evaporation of acetone at room temperature. Coloured crystals of 8-HQ and B8-HQ with good optical quality of dimensions 54 × 3 × 1.5 mm3 and 27 × 3 × 1 mm3 are harvested. Single crystal X-ray diffractometer was utilized to measure the unit cell parameters and to confirm the crystal structure. The presence of various functional groups in the molecule was ascertained by FTIR spectral analysis. The cut-offwavelength of 8-HQ andB8-HQwas centered at 350 and 356 nm. The functional groups in the molecule are elucidated by 1H and 13C-NMR spectral analyses. Kurtz Perry test confirms the SHG in8-HQ andB8-HQ single crystals.
文摘We have investigated the effects of chemical treatment on Single Wall Carbon Nanotube (SWCNT) before and after being modified with HNO3/H2SO4 by Raman, FTIR and UV-Vis-NIR spectroscopy. The results show successful carboxylation of the CNT sidewalls as observed from FTIR and UV-Vis-NIR spectroscopy. This successful functionalization is achieved in 6-8 hrs of refluxing. We also report changes in the first and second order Raman spectra of SWNTs functionalized with oxygenated groups. During the experiment, we observe some important Raman features: Radial breathing mode (RBM), Tangential mode (G-band), and Disordered mode (D-band);which are affected due to the chemical oxidation of carbon nanotubes. We found that the ratio of D- to the G-band intensity (Id/Ig), increase after functionalization and the RBM mode in acid treated SWCNTs is almost disappeared.
文摘The optically transparent and bulk single crystal of p-Toluidine p-Toluenesulfonate (PTPT) was grown by slow evaporation technique. The lattice parameters and crystallinity of the grown crystal were estimated by single crystal XRD. The optical absorption of the crystal was recorded using the UV-Vis-NIR spectrophotometer. The optical bandgap and optical constants of the material were determined by using absorption spectrum. The refractive index of the grown crystal has been determined using the Brewster angle method. The dielectric constant and dielectric loss were measured as a function of frequency and temperature for the grown crystal. Nonlinear optical properties were performed to confirm the SHG efficiency of the grown crystal. Hence, PTPT is an excellent NLO material with enhanced SHG efficiency required for important applications in the field of optoelectronic and photonics. This material exhibits NLO behaviour remarkably due to its better optical and dielectric properties.
文摘ITO nanoparticles were obtained by combustion reaction of urea as fuel. The gel form structures were fired at 350°C in furnace for 20 min to yield powdery products and these products were calcined to five different temperatures from 100°C to 500°C for an hour to yield ITO powders. From the scanning electron microscopy (SEM) photographs and particle size analysis the average sizes of the cubic particle of powders are found to be less than 15 nm and less than 20 nm respectively. The ratio of doping concentration In/Sn is 90/10 and 80/20. The X-ray diffraction (XRD) data were evaluated by Scherer equation for the estimation of the average crystal size of the powders (less than 20 nm) for 90/10 and (less than 25 nm) for 80/20. The synthesized ITO powder characterized by XRD, UV-Vis-NIR and PL shows high specific surface area and possesses small primary crystallite size and good optical band gap.
文摘A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 × 4 ×2 mm3 have been grown from the conventional slow-cooling technique. The crystal structure of the compound has been solved from single crystal X-ray diffraction. The compound 2[C8H4O3]4-Li3+Na+ crystallizes in triclinic system with a space group of Pī having cell dimensions a = 7.5451(2) ? b = 9.8422(3) ? c = 25.2209(7) ? α = 80.299(2);β = 89.204(2);γ = 82.7770(10). FTIR measurement was carried out fo? LiNaP to study the vibrational structure of the compound. The various functional groups present in the molecule and the role of H-bonds in stabilizing the crystal structure of the compound have been explained. Optical absorption properties were studied for the grown crystal using UV-Vis-NIR spectrum. Thermal measurements were carried out for LiNaP to determine the thermal strength as well as to ascertain the hydrated nature of the crystal. Third order nonliner optical studies have also studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results of all studies have been discussed in detail.
基金supported by the Youth Science Fund of Heilongjiang Province of China(QC2015061)
文摘A series of Yb:Nd:LiNbO3 crystals tridoped with various concentrations of Zr4+(1 mol.%, 2 mol.% and 4 mol.%) were grown by the Czochralski technique from the congruent melt. The X-ray powder diffraction, UV-Vis-NIR absorption spectra and IR transmittance spectra were measured to analyze the crystal composition and defect structure. The Zr4+, Yb3+ and Nd3+ ions in LiNbO3 crystal had two effects: volume compensation effect and ion valence state compensation effect. The Zr O2 doping threshold concentration was nearly 2.0 mol.%. The fluorescence emissions of Nd3+ ions and Yb3+ ions were observed under 808 nm excitation. The intensity of fluorescence emissions enhanced with the increasing of the Zr4+ doping concentrations. The Zr:Yb:Nd:LiNbO3 crystals with 4 mol.% doping concentration of Zr4+ ion revealed strong emission around 1 μm, which is of great significance for laser materials.
基金financially supported by the National Natural Science Foundation of China(No.21374056)the Natural Science Basic Research Plan in Shaanxi Province of China(NSBRP-SPC 2014JM2051)+2 种基金the Fundamental Research Funds for the Central Universities(GK201302045)Shaanxi Innovative Research Team for Key Science and Technology(2012KCT-21,2013KCT-17)the One Hundred Plan of Shaanxi Province
文摘The photo-dimerization characteristics of coumarin pendants within amphiphilic random copolymer micelles in aqueous solution was comprehensively investigated using various selected wavelength light in the UV-Vis-NIR region. The time-dependent photo-dimerization degree (PD) changes in the photo-dimerization experiments showed saturating behaviors with intensity-independent of PDmax values at 28%, 44%, 92%, 85%, 36%, 35%, 32% and 31% for 254, 288, 320, 360, 400, 500, 650 and 900 nm irradiations, respectively. The irradiation experiments at 254 and 288 nm announced the occurring of an asymmetric equilibrium of photo-dimerization and photo-cleavage at the used conditions. Both the alternative irradiation cycles of 360 and 254 nm, 650 and 254 nm showed a partially, but evidently reversible photo-dimerization tendency.
基金funded by the Ministry of Science and Technology,Taiwan under project number MOST 107-2221-E-010-008。
文摘This study focuses on the antimicrobial effects in silver-indium-tantalum oxide(Ag–InTaO)thin films.A stack of alternated layers of Ag(7 nm),In_(2)O_(3)(14 nm)and Ta_(2)O_(5)(10 nm)was sequentially deposited by sputtering.Then this as-deposited stack of films was rapidly annealed at three selected temperatures 700,800 or 900℃ for 5 min to allow the formation of complex oxides.Results from material characterization indicate that annealing help to form complex oxides,intermetallic compounds and Ag particles on the top surface.These features lead to the improved antimicrobial effect against E.Coli.under visible light by Ag–InTaO.