期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
一类ψ-Caputo分数阶微分方程解的存在性和Ulam-Hyers稳定性 被引量:3
1
作者 李晓艳 任玮 +1 位作者 谢地 蒋威 《安徽大学学报(自然科学版)》 CAS 北大核心 2023年第1期8-16,共9页
主要讨论在有限闭区间[a,b]上关于另一个函数的非线性Caputo分数阶微分方程.首先,给出了初值问题解的存在性和唯一性的充分条件.其次,利用Krasnoselskii不动点定理证明了该方程解的存在唯一性.最后,分两种情况讨论了系统的Ulam-Hyers-Ra... 主要讨论在有限闭区间[a,b]上关于另一个函数的非线性Caputo分数阶微分方程.首先,给出了初值问题解的存在性和唯一性的充分条件.其次,利用Krasnoselskii不动点定理证明了该方程解的存在唯一性.最后,分两种情况讨论了系统的Ulam-Hyers-Rassias稳定性. 展开更多
关键词 Caputo分数阶微分方程 KRASNOSELSKII不动点定理 ulam-hyers稳定性
下载PDF
一类Riemann-Liouville分数阶时滞随机发展方程的Ulam-Hyers稳定性 被引量:1
2
作者 白玉洁 杨和 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期483-489,共7页
用不动点定理研究Hilbert空间中一类含α∈(0,1)阶Riemann-Liouville分数阶导数的时滞随机发展方程温和解的存在唯一性,并证明该解的Ulam-Hyers稳定性.最后举例说明所得结论的适用性.
关键词 Riemann-Liouville分数阶导数 随机发展方程 时滞 ulam-hyers稳定性
下载PDF
Banach空间中分数阶脉冲积-微分方程的e指数型Ulam-Hyers稳定性
3
作者 赵彦霞 杨和 《吉林大学学报(理学版)》 CAS 北大核心 2020年第5期1055-1065,共11页
用Krasnoselskii不动点定理和Gronwall不等式,讨论Banach空间中分数阶脉冲积-微分方程解的存在性和唯一性问题,得到了其解的e指数型Ulam-Hyers稳定性,并用实例说明所得结论的适用性.
关键词 Caputo分数阶积-微分方程 CAUCHY问题 存在性 唯一性 e指数型ulam-hyers稳定性
下载PDF
一类脉冲非线性分数阶微分耦合系统Cauchy问题的Ulam-Hyers稳定性 被引量:1
4
作者 王悦 赵凯宏 《昆明理工大学学报(自然科学版)》 北大核心 2021年第3期155-166,共12页
考虑了一类脉冲非线性分数阶微分耦合系统的Cauchy问题首先,应用拉普拉斯变换和Mittag-Leffler函数将微分系统转化成对应的积分方程;然后,使用压缩映射原理获得系统解存在唯一的一些充分条件;最后,应用直接分析法证明了系统的Ulam-Hyer... 考虑了一类脉冲非线性分数阶微分耦合系统的Cauchy问题首先,应用拉普拉斯变换和Mittag-Leffler函数将微分系统转化成对应的积分方程;然后,使用压缩映射原理获得系统解存在唯一的一些充分条件;最后,应用直接分析法证明了系统的Ulam-Hyers稳定性.所使用的数学理论和方法对解决同类问题具有借鉴作用. 展开更多
关键词 分数耦合系统 ulam-hyers稳定性 Mittag-Leffler函数 拉普拉斯变换 脉冲
原文传递
Ulam-Hyers stability and analytical approach for m-dimensional Caputo space-time variable fractional order advection-dispersion equation
5
作者 Pratibha Verma Manoj Kumar Anand Shukla 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2022年第1期131-174,共44页
This article introduces the computational analytical approach to solve the m-dimensional space-time variable Caputo fractional order advection–dispersion equation with the Dirichlet boundary using the two-step Adomia... This article introduces the computational analytical approach to solve the m-dimensional space-time variable Caputo fractional order advection–dispersion equation with the Dirichlet boundary using the two-step Adomian decomposition method and obtain the exact solution in just one iteration.Moreover,with the help of fixed point theory,we study the existence and uniqueness conditions for the positive solution and prove some new results.Also,obtain the Ulam–Hyers stabilities for the proposed problem.Two gen-eralized examples are considered to show the method’s applicability and compared with other existing numerical methods.The present method performs exceptionally well in terms of efficiency and simplicity.Further,we solved both examples using the two most well-known numerical methods and compared them with the TSADM solution. 展开更多
关键词 Fixed point theorems space-time variable Caputo’s fractional operators advection-dispersion equation ulam-hyers stability two-step Adomian decomposition method
原文传递
一类Caputo-Katugampola型分数阶微分方程耦合系统边值问题
6
作者 黎宁静 何小飞 陈国平 《吉首大学学报(自然科学版)》 CAS 2024年第5期17-27,共11页
利用Leray-Schauder二择一定理和Schauder不动点定理,研究了一类具有Caputo-Katugampola型导数的分数阶微分方程耦合系统边值问题解的存在唯一性,再利用Banach不动点定理和Ulam-Hyers稳定性的定义,讨论了该边值问题的Ulam-Hyers稳定性.
关键词 分数阶微分方程 Caputo-Katugampola型导数 耦合系统 不动点定理 ulam-hyers稳定性
下载PDF
Fractal Fractional Order Operators in Computational Techniques for Mathematical Models in Epidemiology 被引量:1
7
作者 Muhammad Farman Ali Akgül +2 位作者 Mir Sajjad Hashemi Liliana Guran Amelia Bucur 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1385-1403,共19页
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei... New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation. 展开更多
关键词 COVID-19 model fractal-fractional operator ulam-hyers stability existence and uniqueness numerical simulation
下载PDF
Stability analysis of approximately multidimensional additive mappings on fuzzy spaces
8
作者 B.V.Senthil Kumar Hemen Dutta S.Suresh 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第4期700-720,共21页
The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as wel... The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as well as notable implementation of fuzzy ideas in certain situations involving ambiguity or vagueness.In the context of different fuzzy spaces,we demonstrate their various fundamental stabilities related to Ulam stability theory.An appropriate example is given to show how stability result fails when the singular case occurs.The findings of this study suggest that stability results are valid in situations with uncertain or imprecise data.The stability results obtained under these fuzzy spaces are compared with previous stability results. 展开更多
关键词 additive mapping additive functional equation Ulam stability generalized ulam-hyers stability
下载PDF
STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES
9
作者 Jiafa XU Bakhtawar PERVAIZ +1 位作者 Akbar ZADA Syed Omar SHAH 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期781-800,共20页
In this article,we present the existence,uniqueness,Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales,wi... In this article,we present the existence,uniqueness,Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales,with the help of a fixed point approach.We use Gronwall’s inequality on time scales,an abstract Growall’s lemma and a Picard operator as basic tools to develop our main results.To overcome some difficulties,we make a variety of assumptions.At the end an example is given to demonstrate the validity of our main theoretical results. 展开更多
关键词 Time scale ulam-hyers stability IMPULSES semilinear nonautonomous system Gr?nwall’s inequality dynamic system
下载PDF
Analysis on Krasnoselskii’s fixed point theorem of fuzzy variable fractional differential equation for a novel coronavirus(COVID-19)model with singular operator 被引量:2
10
作者 Pratibha Verma Manoj Kumar Anand Shukla 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第3期150-166,共17页
The fuzzy variable fractional differential equations(FVFDEs)play a very important role in mathematical modeling of COVID-19.The scientists are studying and developing several aspects of these COVID-19 models.The exist... The fuzzy variable fractional differential equations(FVFDEs)play a very important role in mathematical modeling of COVID-19.The scientists are studying and developing several aspects of these COVID-19 models.The existence and uniqueness of the solution,stability analysis are the most common and important study aspects.There is no study in the literature to establish the existence,uniqueness,and UH stability for fuzzy variable fractional(FVF)order COVID-19 models.Due to high demand of this study,we investigate results for the existence,uniqueness,and UH stability for the considered COVID-19 model based on FVFDEs using a fixed point theory approach with the singular operator.Additionally,discuss the maximal/minimal solution for the FVFDE of the COVID-19 model. 展开更多
关键词 Novel coronavirus(COVID-19) variable Caputo fractional derivative fixed point theorem existence and uniqueness ulam-hyers stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部