The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particu...The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particularly in the early stages of the disease.Traditional Chinese medicine(TCM)is based on a systems view combined with personalized strategies and has improved our knowledge of personalized diagnostics.From a systems biology perspective,the understanding of personalized diagnostics can be improved to yield a biochemical basis for such strategies;for example,metabolomics can be used in combination with other system-based diagnostic methods such as ultra-weak photon emission(UPE).In this study,we investigated the feasibility of using plasma metabolomics obtained from 44 pre-T2DM subjects to stratify the following TCM-based subtypes:Qi-Yin deficiency,Qi-Yin deficiency with dampness,and Qi-Yin deficiency with stagnation.We studied the relationship between plasma metabolomics and UPE with respect to TCM-based subtyping in order to obtain biochemical information for further interpreting disease subtypes.Principal component analysis of plasma metabolites revealed differences among the TCM-based pre-T2DM subtypes.Relatively high levels of lipids(e.g.,cholesterol esters and triglycerides)were important discriminators of two of the three subtypes and may be associated with a higher risk of cardiovascular disease.Plasma metabolomics data indicate that the lipid profile is an essential component captured by UPE with respect to stratifying subtypes of T2DM.The results suggest that metabolic differences exist among different TCM-based subtypes of pre-T2DM,and profiling plasma metabolites can be used to discriminate among these subtypes.Plasma metabolomics thus provides biochemical insights into system-based UPE measurements.展开更多
This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in im...This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in improving the simulation efficiency.Our scheme uses the ultra-weak discontinuous Galerkin(DG)formulation and belongs to the framework of adaptive multiresolution schemes.Various numerical experiments are presented to demon-strate the excellent capability of capturing the soliton waves and the blow-up phenomenon.展开更多
Healing therapies are a set of techniques used with the aim of transfusing healthy “bioenergy” to other people in order to restore physical, mental, and emotional balance. It is necessary that something is donated f...Healing therapies are a set of techniques used with the aim of transfusing healthy “bioenergy” to other people in order to restore physical, mental, and emotional balance. It is necessary that something is donated from the healer, that is, something results from his organic metabolism. Also, based on your physical, mental, and emotional health, the energy resulting from your metabolism is assumed to be healthy for the healing of patients. On the other hand, also in many cases, healing does not occur due to the “vicious” quality of the energy to be transfused and the low receptivity of the patient. However, in most cases, it depends not only on the healer but also on the receiver, but usually on other healers, such as higher order consciousnesses. In fact, in many cases of healing, the effect is almost instantaneous with just the healer’s “magnetic energy”, especially in painful crises. Without a doubt, I believe that biophoton is an anti-inflammatory, analgesic, antibacterial and immunomodulatory bioenergy. The healing effectiveness of these therapies is well established. It is a cell-restoring product that can rebuild tissues and organs in a short time, which in many cases leads to the restoration of the patient’s health and well-being. The aim of this study is to address a brief history of ancestral energies of Asian philosophy (Chinese, Japanese and Indian), highlight the role of consciousness and the healer in healing therapies. In addition, the study emphasizes the similarity of these energies with the one called “ectoplasm”, as well as it establishes connections with the newly elected ultra-weak emission of photons. Finally, bibliographic research was carried out in an English language database and innovative concepts were introduced about the role of consciousness as well as the healer in healing therapies.展开更多
A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed ba...A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed based on field programmable gate array (FPGA) platform. The principle of ultra-weak fiber Bragg grating high-speed demodulation and signal recognition method were analyzed theoretically, and the Support Vector Machine model was introduced to optimize the event recognition accuracy of the system. A perimeter security experimental system containing 1000 ultra-weak fiber Bragg gratings, ultra-weak fiber Bragg grating sense optical cables with a diameter of 2.0 mm and a reflectivity of 0.01%, steel space frames and demodulation equipments was built to recognize four typical events such as knocking, shaking, wind blowing and rainfall. The experimental resulted show that the system has a spatial resolution of 1m and an acquisition frequency of 200 Hz. The joint time-frequency domain detection method is used to achieve 99.2% alarm accuracy, and 98% recognition accuracy of two intrusion events, which has good anti-interference performance.展开更多
In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of R...In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
针对光纤直接探测声波时灵敏度低的问题,提出一种超弱光纤光栅缠绕式薄壁圆筒的声波传感探头增敏方法。理论分析了薄壁圆筒半径、壁厚、弹性模量等参数对光纤探头声增敏的影响,仿真分析了光纤缠绕方式对探头谐振频率的影响,优化设计了...针对光纤直接探测声波时灵敏度低的问题,提出一种超弱光纤光栅缠绕式薄壁圆筒的声波传感探头增敏方法。理论分析了薄壁圆筒半径、壁厚、弹性模量等参数对光纤探头声增敏的影响,仿真分析了光纤缠绕方式对探头谐振频率的影响,优化设计了弹性管式探头的结构。搭建了基于超弱光纤光栅声波传感系统,并对探头的声敏特性进行了测试。实验结果显示,探头的声压灵敏度最高可达到6.39746 rad/Pa(-103.8798 dB re rad/μPa),在1000~2000 Hz的平均声压灵敏度为3.30341 rad/Pa(-109.6208 dB re rad/μPa);相较于未增敏的裸光纤,探头的平均声压灵敏度提高了约31 dB。展开更多
This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan ...This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.展开更多
Fiber Bragg grating(FBG)array,consisting of a number of sensing units in a single optical fiber,can be practically applied in quasi-distributed sensing networks.Serious signal crosstalk occurring between large-serial ...Fiber Bragg grating(FBG)array,consisting of a number of sensing units in a single optical fiber,can be practically applied in quasi-distributed sensing networks.Serious signal crosstalk occurring between large-serial of identical FBGs,however,has limited the further increase in the number of sensing units,thus restricting applications only for short-distance sensing networks.To reduce the signal crosstalk,we design two novel types of 10-kilometer-long FBG arrays with 10000 equally spaced gratings,written on-line using a customized grating inscription system,which is affiliated to a drawing tower.Main factors causing signal crosstalk,such as spectral shadowing and multiple reflections,are firstly investigated in theory.Consistent with the theoretical findings,experimental results are proving that ultra-weak(the reflectivity of—40 dB)and multi-wavelength gratings of a number more than 10000 can be readily identified,with satisfied low crosstalk.The maximum attenuation of grating signal and minimum signal-to-noise ratio(SNR)in a single-wavelength array are 10.69 dB and 5.62 dB,respectively.As a comparison,by increasing the number of central wavelengths to three,the attenuation can be effectively reduced to 5.54dB and the minimum SNR has been improved to 8.14 dB.The current study significantly enhances the multiplexing capacity of FBG arrays and demonstrates promising potentials for establishing large-capacity quasi-distributed sensing networks.展开更多
Detection of the irradiation dose and the vigour of irradiated rice based on the ultra-weak luminescent analysis is one of the promising analytical detection methods.Rough rice and head rice flour were used in this re...Detection of the irradiation dose and the vigour of irradiated rice based on the ultra-weak luminescent analysis is one of the promising analytical detection methods.Rough rice and head rice flour were used in this research for ultra-weak luminescent analysis.The bioluminescence intensity of the rough rice was different at varying irradiation doses and storage time.The trend of the differences was consistent with the germination rates of the irradiated rough rice.The changes of the bioluminescence intensity and the germination rate of the irradiated rough rice at diverse irradiation doses and storage time were due to the damage to the rice embryo caused by irradiation and the self-repair function of the embryo during storage.As a result,the ultra-weak luminescent analysis cannot detect the dose of the irradiation treatment on rice,but it can be used to detect the vigour of the irradiated rice.Experimental results show that the irradiation dose has a highly significant effect on the bioluminescence intensity of the rough rice flour when sucrose was added.展开更多
Ultra_weak chemiluminescence sent forth by animals’ organs, tissures and cell organs is discussed. It is indicated that if the ultra_weak chemiluminescence of an animal is high, its metabolism is exuberant, and its p...Ultra_weak chemiluminescence sent forth by animals’ organs, tissures and cell organs is discussed. It is indicated that if the ultra_weak chemiluminescence of an animal is high, its metabolism is exuberant, and its pregnant rate is high. A study of the influence of ligh voltage static electric field on the luminescence of sheep sperm is carried out.展开更多
文摘The prevalence of type 2 diabetes mellitus(T2DM)is increasing rapidly worldwide.Because of the limited success of generic interventions,the focus of the disease study has shifted toward personalized strategies,particularly in the early stages of the disease.Traditional Chinese medicine(TCM)is based on a systems view combined with personalized strategies and has improved our knowledge of personalized diagnostics.From a systems biology perspective,the understanding of personalized diagnostics can be improved to yield a biochemical basis for such strategies;for example,metabolomics can be used in combination with other system-based diagnostic methods such as ultra-weak photon emission(UPE).In this study,we investigated the feasibility of using plasma metabolomics obtained from 44 pre-T2DM subjects to stratify the following TCM-based subtypes:Qi-Yin deficiency,Qi-Yin deficiency with dampness,and Qi-Yin deficiency with stagnation.We studied the relationship between plasma metabolomics and UPE with respect to TCM-based subtyping in order to obtain biochemical information for further interpreting disease subtypes.Principal component analysis of plasma metabolites revealed differences among the TCM-based pre-T2DM subtypes.Relatively high levels of lipids(e.g.,cholesterol esters and triglycerides)were important discriminators of two of the three subtypes and may be associated with a higher risk of cardiovascular disease.Plasma metabolomics data indicate that the lipid profile is an essential component captured by UPE with respect to stratifying subtypes of T2DM.The results suggest that metabolic differences exist among different TCM-based subtypes of pre-T2DM,and profiling plasma metabolites can be used to discriminate among these subtypes.Plasma metabolomics thus provides biochemical insights into system-based UPE measurements.
基金Funding Y.Liu:Research supported in part by a grant from the Simons Foundation(426993,Yuan Liu)W.Guo:Research is supported by NSF grant DMS-1830838+1 种基金Y.Cheng:Research is supported by NSF grants DMS-1453661 and DMS-1720023Z.Tao:Research is supported by NSFC Grant 12001231.
文摘This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in improving the simulation efficiency.Our scheme uses the ultra-weak discontinuous Galerkin(DG)formulation and belongs to the framework of adaptive multiresolution schemes.Various numerical experiments are presented to demon-strate the excellent capability of capturing the soliton waves and the blow-up phenomenon.
文摘Healing therapies are a set of techniques used with the aim of transfusing healthy “bioenergy” to other people in order to restore physical, mental, and emotional balance. It is necessary that something is donated from the healer, that is, something results from his organic metabolism. Also, based on your physical, mental, and emotional health, the energy resulting from your metabolism is assumed to be healthy for the healing of patients. On the other hand, also in many cases, healing does not occur due to the “vicious” quality of the energy to be transfused and the low receptivity of the patient. However, in most cases, it depends not only on the healer but also on the receiver, but usually on other healers, such as higher order consciousnesses. In fact, in many cases of healing, the effect is almost instantaneous with just the healer’s “magnetic energy”, especially in painful crises. Without a doubt, I believe that biophoton is an anti-inflammatory, analgesic, antibacterial and immunomodulatory bioenergy. The healing effectiveness of these therapies is well established. It is a cell-restoring product that can rebuild tissues and organs in a short time, which in many cases leads to the restoration of the patient’s health and well-being. The aim of this study is to address a brief history of ancestral energies of Asian philosophy (Chinese, Japanese and Indian), highlight the role of consciousness and the healer in healing therapies. In addition, the study emphasizes the similarity of these energies with the one called “ectoplasm”, as well as it establishes connections with the newly elected ultra-weak emission of photons. Finally, bibliographic research was carried out in an English language database and innovative concepts were introduced about the role of consciousness as well as the healer in healing therapies.
文摘A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed based on field programmable gate array (FPGA) platform. The principle of ultra-weak fiber Bragg grating high-speed demodulation and signal recognition method were analyzed theoretically, and the Support Vector Machine model was introduced to optimize the event recognition accuracy of the system. A perimeter security experimental system containing 1000 ultra-weak fiber Bragg gratings, ultra-weak fiber Bragg grating sense optical cables with a diameter of 2.0 mm and a reflectivity of 0.01%, steel space frames and demodulation equipments was built to recognize four typical events such as knocking, shaking, wind blowing and rainfall. The experimental resulted show that the system has a spatial resolution of 1m and an acquisition frequency of 200 Hz. The joint time-frequency domain detection method is used to achieve 99.2% alarm accuracy, and 98% recognition accuracy of two intrusion events, which has good anti-interference performance.
基金Research sponsored by NSFC grants 11871428 and 12071214Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011+1 种基金Research is supported in part by NSFC grants U1930402the fellowship of China Postdoctoral Science Foundation(No.2020TQ0030).
文摘In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
文摘针对光纤直接探测声波时灵敏度低的问题,提出一种超弱光纤光栅缠绕式薄壁圆筒的声波传感探头增敏方法。理论分析了薄壁圆筒半径、壁厚、弹性模量等参数对光纤探头声增敏的影响,仿真分析了光纤缠绕方式对探头谐振频率的影响,优化设计了弹性管式探头的结构。搭建了基于超弱光纤光栅声波传感系统,并对探头的声敏特性进行了测试。实验结果显示,探头的声压灵敏度最高可达到6.39746 rad/Pa(-103.8798 dB re rad/μPa),在1000~2000 Hz的平均声压灵敏度为3.30341 rad/Pa(-109.6208 dB re rad/μPa);相较于未增敏的裸光纤,探头的平均声压灵敏度提高了约31 dB。
基金This work was supported by the Major Program of the National Natural Science Foundation of China, NSFC (Grant No. 61290311) and the Natural Science Foundation of Hubei Province, China (No. 2014CFB269).
文摘This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.
基金All authors thank the National Engineering Laboratory for Fiber Optic Sensing Technology for offering the experimental equipment.This work was supported by the National Natural Science Foundation of China(Grant No.61290311)Hubei Key Laboratory of Radiation Chemistry and Functional Materials(Grant No.2019-20KZ08)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Grant No.2019-KF-ll).
文摘Fiber Bragg grating(FBG)array,consisting of a number of sensing units in a single optical fiber,can be practically applied in quasi-distributed sensing networks.Serious signal crosstalk occurring between large-serial of identical FBGs,however,has limited the further increase in the number of sensing units,thus restricting applications only for short-distance sensing networks.To reduce the signal crosstalk,we design two novel types of 10-kilometer-long FBG arrays with 10000 equally spaced gratings,written on-line using a customized grating inscription system,which is affiliated to a drawing tower.Main factors causing signal crosstalk,such as spectral shadowing and multiple reflections,are firstly investigated in theory.Consistent with the theoretical findings,experimental results are proving that ultra-weak(the reflectivity of—40 dB)and multi-wavelength gratings of a number more than 10000 can be readily identified,with satisfied low crosstalk.The maximum attenuation of grating signal and minimum signal-to-noise ratio(SNR)in a single-wavelength array are 10.69 dB and 5.62 dB,respectively.As a comparison,by increasing the number of central wavelengths to three,the attenuation can be effectively reduced to 5.54dB and the minimum SNR has been improved to 8.14 dB.The current study significantly enhances the multiplexing capacity of FBG arrays and demonstrates promising potentials for establishing large-capacity quasi-distributed sensing networks.
基金The authors acknowledge the financial support of National Natural Science Foundation of China through project 3047000the Program for New Century Excellent Talents in Chinese Universities through Project NCET-04-0544to China Postdoctoral Science Foundation 20060400320 for the project support.
文摘Detection of the irradiation dose and the vigour of irradiated rice based on the ultra-weak luminescent analysis is one of the promising analytical detection methods.Rough rice and head rice flour were used in this research for ultra-weak luminescent analysis.The bioluminescence intensity of the rough rice was different at varying irradiation doses and storage time.The trend of the differences was consistent with the germination rates of the irradiated rough rice.The changes of the bioluminescence intensity and the germination rate of the irradiated rough rice at diverse irradiation doses and storage time were due to the damage to the rice embryo caused by irradiation and the self-repair function of the embryo during storage.As a result,the ultra-weak luminescent analysis cannot detect the dose of the irradiation treatment on rice,but it can be used to detect the vigour of the irradiated rice.Experimental results show that the irradiation dose has a highly significant effect on the bioluminescence intensity of the rough rice flour when sucrose was added.
文摘Ultra_weak chemiluminescence sent forth by animals’ organs, tissures and cell organs is discussed. It is indicated that if the ultra_weak chemiluminescence of an animal is high, its metabolism is exuberant, and its pregnant rate is high. A study of the influence of ligh voltage static electric field on the luminescence of sheep sperm is carried out.