In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L...In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-si...The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-silico proteolysis.Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all the peptides were non-cytotoxic.The hexapeptide(SSGFID)exhibited high M^(pro)inhibitory activity in molecular docking and its IC_(50)value was 139.40±0.82μmol/L in vitro according to fluorescence resonance energy transfer assay(FRET).Quantitative real-time(qRT-)PCR results show that SSGFID could stimulate the expression of mitosis-related factors,including nuclear factor-κB,cyclin D1,and cyclin-dependent kinase 4,to promote the proliferation of mice splenocytes.Stability study revealed that SSGFID showed resistance against pepsin and trypsin but lost D(Asp)after pretreatment at121℃ for 15 min.Besides,SSGFID was mainly transported through the Caco-2 cell monolayer by the peptide transporter PepT1 and passive-mediated transport during the transport study.Unfortunately,the peptide was also degraded by Caco-2 intracellular enzymes,and the transfer rate of intact peptide was4.2%.Furthermore,Lineweaver–Burk plots demonstrated that SSGFID possessed a mixed inhibitory characteristic with M^(pro).Our study indicated the potential of Ulva prolifera as antiviral and immuneenhancing functional food ingredients and nutraceuticals.展开更多
The unavoidable nature of Ulva prolifera mixed pixel in low-resolution remote sensing images would result in rough boundary of U.prolifera patches,omission of tiny patches,and overestimation of coverage area.The decom...The unavoidable nature of Ulva prolifera mixed pixel in low-resolution remote sensing images would result in rough boundary of U.prolifera patches,omission of tiny patches,and overestimation of coverage area.The decomposition of U.prolifera mixed pixel addresses the issue of coverage area overestimation,and the remaining problems can be alleviated by subpixel mapping(SPM).Due to the drift and dissipation of U.prolifera,a suitable SPM method is the single image-based unsupervised method.However,the method has difficulties in detail reconstruction,insufficient learning of spectral information,and SPM error introduced by abundance deviation.Therefore,we proposed a multiple-feature decision fusion SPM(MFDFSPM)method.It involves three branches to obtain the spatial,abundance,and spectral features of U.prolifera while considers multi-feature information using the fusion strategy.Experiments on the Geostationary Ocean Color Imager images in the Yellow Sea of China indicate that the MFDFSPM overperforms several typical U.prolifera SPM methods in higher accuracy and stronger robustness in both SPM and abundance calculation,which produced subpixel map with more detailed spatial information and less noise.展开更多
In this study,Ulva prolifera protein was used for preparing angiotensin-I converting enzyme(ACE)-inhibitory peptide via virtual gastrointestinal digestion and in silico screening.Some parameters of the obtained peptid...In this study,Ulva prolifera protein was used for preparing angiotensin-I converting enzyme(ACE)-inhibitory peptide via virtual gastrointestinal digestion and in silico screening.Some parameters of the obtained peptide,such as inhibition kinetics,docking mechanism,stability,transport pathway,were explored by Lineweaver-Burk plots,molecular docking,in vitro stimulate gastrointestinal(GI)digestion and Caco-2 cells monolayer model,respectively.Then,a novel anti-ACE peptide LDF(IC_(50),(1.66±0.34)μmol/L)was screened and synthesized by chemical synthesis.It was a no-competitive inhibitor and its anti-ACE inhibitory effect mainly attributable to four Conventional Hydrogen Bonds and Zn701 interactions.It could keep activity during simulated GI digestion in vitro and was transported by peptide transporter PepT1 and passive-mediated mode.Besides,it could activate Endothelial nitric oxide synthase(eNOS)activity to promote the production of NO and reduce Endothelin-1(ET-1)secretion induced by AngiotensinⅡ(AngⅡ)in Human Umbilical Vein Endothelial Cells(HUVECs).Meanwhile,it could promote mice splenocytes proliferation in a concentration-dependent manner.Our study indicated that this peptide was a potential ingredient functioning on vasodilation and enhancing immunity.展开更多
Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dis...Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dissipate under the action of southeast monsoons and ocean surface currents.This causes serious harm to the ecological environment and economic activities of coastal cities.To investigate the impact of U.prolifera dissipation,this study extracted the spatiotemporal distribution of U.prolifera in the SYS from 2012 to 2020 based on the Google Earth Engine.The outbreak cycle of U.prolifera was determined by fitting analysis of outbreak time and coverage area through MATLAB.This study also looked at the effect of U.prolifera dissipation on water quality through field monitoring data.The results showed that the growth curve of the U.prolifera has a significant Gaussian distribution.The U.prolifera dissipates in Haiyang,China,in July and August every year and affects the offshore environment.Water quality parameters of seawater at different depths had significant differences after the U.prolifera dissipation.Changes in pH,chemical oxygen demand,nitrite nitrogen,nitrate nitrogen,ammonia nitrogen,chlorophyll a,total phosphorus,and suspended solids were more significant in surface seawater than in deeper water.Changes in the concentrations of dissolved oxygen and total nitrogen were more significant in the deep seawater(1.63 and 1.1 times higher than those in the surface seawater,respectively).The dissipation of U.prolifera releases a large amount of carbon and nitrogen into the seawater,which provides rich nutrients for phytoplankton and may cause secondary disasters such as red tide.These findings are useful for further understanding the rules of U.prolifera dissipation,as well as preventing and controlling green tide disasters.展开更多
Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceedin...Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceeding in the Yellow Sea since 2007. It was, however, unclear how the detached U. prolifera responded and resumed growing after they detached from its original habitat. In this study, we investigated the growth and photosynthetic response of the detached U. prolifera to various temperature, salinity and irradiance in the laboratory. The photosynthetic rate of the detached U. prolifera was significantly higher at moderate temperature levels(14–27℃)and high salinity(26–32), with optimum at 23℃ and 32. Both low(14℃) and highest temperature(40℃), as well as low salinity(8) had adverse effects on the photosynthesis. Compared with the other Ulva species, U. prolifera showed higher saturated irradiance and no significant photoinhibition at high irradiance, indicating the great tolerance of U. prolifera to the high irradiance. The dense branch and complex structure of floating mats could help protect the thalli and reduce photoinhibition in field. Furthermore, temperature exerted a stronger influence on the growth rate of the detached U. prolifera compared to salinity. Overall, the high growth rate of this detached U. prolifera(10.6%–16.7% d^–1) at a wide range of temperature(5–32℃) and salinity(14–32) implied its blooming tendency with fluctuated salinity and temperature during floating. The environmental parameters in the southwestern Yellow Sea at the beginning of green tide were coincident with the optimal conditions for the detached U. prolifera.展开更多
The aim of this study was to investigate the effects of light intensity and enhanced nitrogen supply on the growth and photosynthesis of the green-tide macroalga, Ulvaprolifera. Thalli of U. prolifera were grown in na...The aim of this study was to investigate the effects of light intensity and enhanced nitrogen supply on the growth and photosynthesis of the green-tide macroalga, Ulvaprolifera. Thalli of U. prolifera were grown in natural or NH^-enriched seawater under two different light intensities for 7 days, and then the growth rate, pigmentation, and photosynthetic performance of the thalli were evaluated. The results show that the relative growth rate (RGR) was markedly higher under the high light level than under the low light level. Enrichment with NH~ enhanced the RGR under high light intensity, but did not affect RGR under low light intensity. In low light conditions, NH;-enrichment resulted in a marked decrease in the maximal photosynthetic rate (Pro) and the maximum carbon fixation rate (Vmax), but it did not affect the half saturation constant for carbon (K0.5) or the ratio of Vmax to K0.5, which reflects the carbon acquisition efficiency. In high light conditions, Pm, K05, and the dark respiration rate (Rd) increased under NHI enrichment, but Vmax and the Vmax/Ko5 ratio decreased. Regardless of the light intensity, NH^+4-enrichment did not affect the apparent photosynthetic efficiency (a), which reflects the ability of the alga to use light energy at low light levels. Under both low and high light intensities, the chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) contents in thalli were higher in NH1-enriched than in natural seawater, except that there was a decrease in the Chl b content of thalli in NH1-enriched seawater under low light intensity. Therefore, NH^+4 enrichment improved the growth and photosynthetic performance of U. prolifera under high light intensity, but not under low light intensity. We discuss the possible mechanisms underlying these physiological responses.展开更多
Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia...Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia aquaculture rafts in the Subei Shoal.Ulva prolifera and Blidingia(Italic)sp.are the main species observed on Pyropia aquaculture rafts in the Subei Shoal.We found that U.prolifera has strong buoyancy and a rapid growth rate,which may explain why it is the dominant species of green tides that occur in the China's sea area of the Yellow Sea.The growth rate of floating U.prolifera was about 20%–31%d–1,which was much higher than Blidingia(Italic)sp.There were about 1.7×104 t of attached algae on the Pyropia aquaculture rafts in May 2012.We found that 39%of attached algae could float when the tide rose in the Subei Shoal,and U.prolifera accounted for 63%of the floating algae.Our analysis estimated that about 4000 t of attached U.prolifera floated into the surrounding waters of the Subei Shoal during the recycling period of aquaculture rafts.These results suggest that the initial floating biomass of large-scale green tides in the Yellow Sea is determined by the U.prolifera biomass attached to Pyropia aquaculture rafts,further impacting the scale of the green tide。展开更多
In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green...In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).展开更多
Marine ecological disasters occurred frequently in recent years and raised widespread concerns about the ecological health of the ocean.We analyzed the spatiotemporal distributions of Ulva prolifera and Sargassum from...Marine ecological disasters occurred frequently in recent years and raised widespread concerns about the ecological health of the ocean.We analyzed the spatiotemporal distributions of Ulva prolifera and Sargassum from April to July each year between 2016 and 2020 in the South Yellow Sea using multisource(GF-1 and HJ-1A/1B)remote sensing images,combined with the MODIS sea surface temperature(SST)data,photosynthetically active radiation(PAR)data,and Quick SCAT sea surface wind(SSW)data,to explore the potential influencing factors.The results show that(1)U.prolifera and Sargassum appeared mainly from May to July and April to June,respectively;(2)U.prolifera showed an impact in larger spatial scope than that of Sargassum.U.prolifera originated in the shoal area of northern Jiangsu and finally disappeared in the sea near Haiyang-Rongcheng area.The spatial scope of the impact of Sargassum tended to expand.Sargassum was first detected in the ocean northeast of the Changjiang(Yangtze)River estuary and disappeared near 35°N;and(3)correlation analysis showed that the SST influenced the growth rate of U.prolifera and Sargassum.PAR had varied eff ects on U.prolifera and Sargassum at different times.A moderate light conditions could accelerate the growth and reproduction of U.prolifera and Sargassum.High irradiance levels of ultraviolet radiation may cause photoinhibition and damage on U.prolifera and Sargassum.The southeast monsoon and surface currents promoted the drift of U.prolifera and Sargassum from the southeast to the northwest and north.Therefore,the spatial and temporal similarities and differences between U.prolifera and Sargassum were influenced by a combination of factors during their growth processes.展开更多
In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the ...In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the period of 2011–2018 was extracted and combined with MODIS Level3 Photosynthetically Active Radiation(PAR)product data and Earth System Research Laboratory(ESRL)Sea Surface Temperature(SST)data to analyze their influences on the growth and outbreak of Ulva prolifera.The following conclusions were drawn:1)comprehensive analysis of Ulva prolifera distribution during the eight-year period revealed that the coverage area of Ulva prolifera typically exhibited a gradually increasing trend.The coverage area of Ulva prolifera reached a maximum of approximately 1714.21 km^2 during the eight-year period in late June 2015.The area affected by Ulva prolifera fluctuated.In mid-July 2014,the area affected by Ulva prolifera reached a maximum of approximately 39020.63 km^2.2)The average growth rate of Ulva prolifera was positive in May and June but negative in July.During the outbreak of Ulva prolifera,the SST in the southern Yellow Sea tended to increase each month.The SST anomaly and average growth rate of Ulva prolifera were positively correlated in May(R^2=0.62),but not significantly correlated in June or July.3)The variation trends of PAR and SST were approximately the same,and the PAR during this time period maintained a range of 40–50 mol/(m^2·d),providing sufficient illumination for the growth and outbreak of Ulva prolifera.In addition,the abundant nutrients and suitable temperature in the sea area near northern Jiangsu shoal resulted in a high growth rate of Ulva prolifera in May.In summary,the outbreak of Ulva prolifera was closely related to the environmental factors including SST,nutrients,and PAR.Sufficient nutrients and suitable temperatures resulted in a fast growth rate of Ulva prolifera.However,under poor nutrient conditions,even more suitable temperatures were not sufficient to trigger an outbreak of Ulva prolifera.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY23D060003)the Key Program of Science and Technology Innovation in Ningbo(2021Z114,2023Z118)sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金Supported by the National Key R&D Program of China (No.2016YFC1402102)the National Natural Science Foundation of China (No.41976109)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The main protease(M^(pro))is essential for the replication of SARS-COV-2 and therefore represents a promising anti-viral target.In this study,we screened M^(pro)inhibitory peptides from Ulva prolifera protein on in-silico proteolysis.Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all the peptides were non-cytotoxic.The hexapeptide(SSGFID)exhibited high M^(pro)inhibitory activity in molecular docking and its IC_(50)value was 139.40±0.82μmol/L in vitro according to fluorescence resonance energy transfer assay(FRET).Quantitative real-time(qRT-)PCR results show that SSGFID could stimulate the expression of mitosis-related factors,including nuclear factor-κB,cyclin D1,and cyclin-dependent kinase 4,to promote the proliferation of mice splenocytes.Stability study revealed that SSGFID showed resistance against pepsin and trypsin but lost D(Asp)after pretreatment at121℃ for 15 min.Besides,SSGFID was mainly transported through the Caco-2 cell monolayer by the peptide transporter PepT1 and passive-mediated transport during the transport study.Unfortunately,the peptide was also degraded by Caco-2 intracellular enzymes,and the transfer rate of intact peptide was4.2%.Furthermore,Lineweaver–Burk plots demonstrated that SSGFID possessed a mixed inhibitory characteristic with M^(pro).Our study indicated the potential of Ulva prolifera as antiviral and immuneenhancing functional food ingredients and nutraceuticals.
基金Supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2019MD023)the National Natural Science Foundation of China(No.41776182)。
文摘The unavoidable nature of Ulva prolifera mixed pixel in low-resolution remote sensing images would result in rough boundary of U.prolifera patches,omission of tiny patches,and overestimation of coverage area.The decomposition of U.prolifera mixed pixel addresses the issue of coverage area overestimation,and the remaining problems can be alleviated by subpixel mapping(SPM).Due to the drift and dissipation of U.prolifera,a suitable SPM method is the single image-based unsupervised method.However,the method has difficulties in detail reconstruction,insufficient learning of spectral information,and SPM error introduced by abundance deviation.Therefore,we proposed a multiple-feature decision fusion SPM(MFDFSPM)method.It involves three branches to obtain the spatial,abundance,and spectral features of U.prolifera while considers multi-feature information using the fusion strategy.Experiments on the Geostationary Ocean Color Imager images in the Yellow Sea of China indicate that the MFDFSPM overperforms several typical U.prolifera SPM methods in higher accuracy and stronger robustness in both SPM and abundance calculation,which produced subpixel map with more detailed spatial information and less noise.
文摘In this study,Ulva prolifera protein was used for preparing angiotensin-I converting enzyme(ACE)-inhibitory peptide via virtual gastrointestinal digestion and in silico screening.Some parameters of the obtained peptide,such as inhibition kinetics,docking mechanism,stability,transport pathway,were explored by Lineweaver-Burk plots,molecular docking,in vitro stimulate gastrointestinal(GI)digestion and Caco-2 cells monolayer model,respectively.Then,a novel anti-ACE peptide LDF(IC_(50),(1.66±0.34)μmol/L)was screened and synthesized by chemical synthesis.It was a no-competitive inhibitor and its anti-ACE inhibitory effect mainly attributable to four Conventional Hydrogen Bonds and Zn701 interactions.It could keep activity during simulated GI digestion in vitro and was transported by peptide transporter PepT1 and passive-mediated mode.Besides,it could activate Endothelial nitric oxide synthase(eNOS)activity to promote the production of NO and reduce Endothelin-1(ET-1)secretion induced by AngiotensinⅡ(AngⅡ)in Human Umbilical Vein Endothelial Cells(HUVECs).Meanwhile,it could promote mice splenocytes proliferation in a concentration-dependent manner.Our study indicated that this peptide was a potential ingredient functioning on vasodilation and enhancing immunity.
基金The National Natural Science Foundation of China under contract No.42071385the Shandong Natural Science Foundation under contract No.ZR2019MD041+1 种基金the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University under contract No.MAETIC2021-12the Yantai Science and Technology Innovation Development Plan Project under contract No.2022MSGY062。
文摘Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dissipate under the action of southeast monsoons and ocean surface currents.This causes serious harm to the ecological environment and economic activities of coastal cities.To investigate the impact of U.prolifera dissipation,this study extracted the spatiotemporal distribution of U.prolifera in the SYS from 2012 to 2020 based on the Google Earth Engine.The outbreak cycle of U.prolifera was determined by fitting analysis of outbreak time and coverage area through MATLAB.This study also looked at the effect of U.prolifera dissipation on water quality through field monitoring data.The results showed that the growth curve of the U.prolifera has a significant Gaussian distribution.The U.prolifera dissipates in Haiyang,China,in July and August every year and affects the offshore environment.Water quality parameters of seawater at different depths had significant differences after the U.prolifera dissipation.Changes in pH,chemical oxygen demand,nitrite nitrogen,nitrate nitrogen,ammonia nitrogen,chlorophyll a,total phosphorus,and suspended solids were more significant in surface seawater than in deeper water.Changes in the concentrations of dissolved oxygen and total nitrogen were more significant in the deep seawater(1.63 and 1.1 times higher than those in the surface seawater,respectively).The dissipation of U.prolifera releases a large amount of carbon and nitrogen into the seawater,which provides rich nutrients for phytoplankton and may cause secondary disasters such as red tide.These findings are useful for further understanding the rules of U.prolifera dissipation,as well as preventing and controlling green tide disasters.
基金The Special Funds for Basic Ocean Science Research of FIO under contract Nos 2012T08,2014G33 and 2008T30the National Natural Science Foundation of China-Shandong Joint Funded Project“Marine Ecology and Environmental Sciences”under contract No.U1406403+1 种基金the National Natural Science Foundation of China under contract Nos 41206162 and 41206161the National Basic Research Program(973 Program)of China under contract No.2010CB428703
文摘Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceeding in the Yellow Sea since 2007. It was, however, unclear how the detached U. prolifera responded and resumed growing after they detached from its original habitat. In this study, we investigated the growth and photosynthetic response of the detached U. prolifera to various temperature, salinity and irradiance in the laboratory. The photosynthetic rate of the detached U. prolifera was significantly higher at moderate temperature levels(14–27℃)and high salinity(26–32), with optimum at 23℃ and 32. Both low(14℃) and highest temperature(40℃), as well as low salinity(8) had adverse effects on the photosynthesis. Compared with the other Ulva species, U. prolifera showed higher saturated irradiance and no significant photoinhibition at high irradiance, indicating the great tolerance of U. prolifera to the high irradiance. The dense branch and complex structure of floating mats could help protect the thalli and reduce photoinhibition in field. Furthermore, temperature exerted a stronger influence on the growth rate of the detached U. prolifera compared to salinity. Overall, the high growth rate of this detached U. prolifera(10.6%–16.7% d^–1) at a wide range of temperature(5–32℃) and salinity(14–32) implied its blooming tendency with fluctuated salinity and temperature during floating. The environmental parameters in the southwestern Yellow Sea at the beginning of green tide were coincident with the optimal conditions for the detached U. prolifera.
基金Supported by the National Natural Science Foundation of China(No.41376129)the Public Science and Technology Research Funds Projects of Ocean(Nos.201305005,201305021,201105008-2)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK2011400)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020404-1)
文摘The aim of this study was to investigate the effects of light intensity and enhanced nitrogen supply on the growth and photosynthesis of the green-tide macroalga, Ulvaprolifera. Thalli of U. prolifera were grown in natural or NH^-enriched seawater under two different light intensities for 7 days, and then the growth rate, pigmentation, and photosynthetic performance of the thalli were evaluated. The results show that the relative growth rate (RGR) was markedly higher under the high light level than under the low light level. Enrichment with NH~ enhanced the RGR under high light intensity, but did not affect RGR under low light intensity. In low light conditions, NH;-enrichment resulted in a marked decrease in the maximal photosynthetic rate (Pro) and the maximum carbon fixation rate (Vmax), but it did not affect the half saturation constant for carbon (K0.5) or the ratio of Vmax to K0.5, which reflects the carbon acquisition efficiency. In high light conditions, Pm, K05, and the dark respiration rate (Rd) increased under NHI enrichment, but Vmax and the Vmax/Ko5 ratio decreased. Regardless of the light intensity, NH^+4-enrichment did not affect the apparent photosynthetic efficiency (a), which reflects the ability of the alga to use light energy at low light levels. Under both low and high light intensities, the chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) contents in thalli were higher in NH1-enriched than in natural seawater, except that there was a decrease in the Chl b content of thalli in NH1-enriched seawater under low light intensity. Therefore, NH^+4 enrichment improved the growth and photosynthetic performance of U. prolifera under high light intensity, but not under low light intensity. We discuss the possible mechanisms underlying these physiological responses.
基金The National Key R&D Program of China under contract Nos 2016YFC1402104 and 2016YFC1402106the National Natural Science Foundation of China under contract No.41606190+2 种基金the Shandong Natural Science Foundation under contract No.ZR2016DB22the Foundation of Key Laboratory of Integrated Monitoring and Applied Technologies for Marine Harmful Algal Blooms,SOA under contract No.MATHAB 201806the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology under contract No.LMEES-CTSP-2018-3
文摘Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia aquaculture rafts in the Subei Shoal.Ulva prolifera and Blidingia(Italic)sp.are the main species observed on Pyropia aquaculture rafts in the Subei Shoal.We found that U.prolifera has strong buoyancy and a rapid growth rate,which may explain why it is the dominant species of green tides that occur in the China's sea area of the Yellow Sea.The growth rate of floating U.prolifera was about 20%–31%d–1,which was much higher than Blidingia(Italic)sp.There were about 1.7×104 t of attached algae on the Pyropia aquaculture rafts in May 2012.We found that 39%of attached algae could float when the tide rose in the Subei Shoal,and U.prolifera accounted for 63%of the floating algae.Our analysis estimated that about 4000 t of attached U.prolifera floated into the surrounding waters of the Subei Shoal during the recycling period of aquaculture rafts.These results suggest that the initial floating biomass of large-scale green tides in the Yellow Sea is determined by the U.prolifera biomass attached to Pyropia aquaculture rafts,further impacting the scale of the green tide。
基金Supported by the Scientific and Technical Supporting Programs of China (2008BAC49B01)the National Natural Science Foundation of China (No. 30830015)
文摘In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).
基金Supported by the National Natural Science Foundation of China(No.42071385)the Natural Science Foundation of Shandong Province,China(No.ZR2019MD041)。
文摘Marine ecological disasters occurred frequently in recent years and raised widespread concerns about the ecological health of the ocean.We analyzed the spatiotemporal distributions of Ulva prolifera and Sargassum from April to July each year between 2016 and 2020 in the South Yellow Sea using multisource(GF-1 and HJ-1A/1B)remote sensing images,combined with the MODIS sea surface temperature(SST)data,photosynthetically active radiation(PAR)data,and Quick SCAT sea surface wind(SSW)data,to explore the potential influencing factors.The results show that(1)U.prolifera and Sargassum appeared mainly from May to July and April to June,respectively;(2)U.prolifera showed an impact in larger spatial scope than that of Sargassum.U.prolifera originated in the shoal area of northern Jiangsu and finally disappeared in the sea near Haiyang-Rongcheng area.The spatial scope of the impact of Sargassum tended to expand.Sargassum was first detected in the ocean northeast of the Changjiang(Yangtze)River estuary and disappeared near 35°N;and(3)correlation analysis showed that the SST influenced the growth rate of U.prolifera and Sargassum.PAR had varied eff ects on U.prolifera and Sargassum at different times.A moderate light conditions could accelerate the growth and reproduction of U.prolifera and Sargassum.High irradiance levels of ultraviolet radiation may cause photoinhibition and damage on U.prolifera and Sargassum.The southeast monsoon and surface currents promoted the drift of U.prolifera and Sargassum from the southeast to the northwest and north.Therefore,the spatial and temporal similarities and differences between U.prolifera and Sargassum were influenced by a combination of factors during their growth processes.
基金Under the auspices of Natural Science Foundation of Shandong(No.ZR2019MD041)National Natural Science Foundation of China(No.41676171)+2 种基金Qingdao National Laboratory for Marine Science and Technology of China(No.2016ASKJ02)Natural Science Foundation of Shandong(No.ZR2015DM015)Development and Construction Funds Project of National Independent Innovation Demonstration Zone in Shandong Peninsula(No.ZCQ17117)。
文摘In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the period of 2011–2018 was extracted and combined with MODIS Level3 Photosynthetically Active Radiation(PAR)product data and Earth System Research Laboratory(ESRL)Sea Surface Temperature(SST)data to analyze their influences on the growth and outbreak of Ulva prolifera.The following conclusions were drawn:1)comprehensive analysis of Ulva prolifera distribution during the eight-year period revealed that the coverage area of Ulva prolifera typically exhibited a gradually increasing trend.The coverage area of Ulva prolifera reached a maximum of approximately 1714.21 km^2 during the eight-year period in late June 2015.The area affected by Ulva prolifera fluctuated.In mid-July 2014,the area affected by Ulva prolifera reached a maximum of approximately 39020.63 km^2.2)The average growth rate of Ulva prolifera was positive in May and June but negative in July.During the outbreak of Ulva prolifera,the SST in the southern Yellow Sea tended to increase each month.The SST anomaly and average growth rate of Ulva prolifera were positively correlated in May(R^2=0.62),but not significantly correlated in June or July.3)The variation trends of PAR and SST were approximately the same,and the PAR during this time period maintained a range of 40–50 mol/(m^2·d),providing sufficient illumination for the growth and outbreak of Ulva prolifera.In addition,the abundant nutrients and suitable temperature in the sea area near northern Jiangsu shoal resulted in a high growth rate of Ulva prolifera in May.In summary,the outbreak of Ulva prolifera was closely related to the environmental factors including SST,nutrients,and PAR.Sufficient nutrients and suitable temperatures resulted in a fast growth rate of Ulva prolifera.However,under poor nutrient conditions,even more suitable temperatures were not sufficient to trigger an outbreak of Ulva prolifera.