期刊文献+
共找到36,005篇文章
< 1 2 250 >
每页显示 20 50 100
Assessment of Meteorological Threats to the Coordinated Search and Rescue of Unmanned/Manned Aircraft
1
作者 Fei YAN Chuan LI +2 位作者 Xiaoyi FU Kefeng WU Yuying LI 《Meteorological and Environmental Research》 2024年第1期27-29,37,共4页
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate... The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance. 展开更多
关键词 unmanned/manned aircraft Coordinated search and rescue Assessment of meteorological threats Meteorological data
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
2
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
3
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring Data fusion Terrestrial laser scanning(TLS) unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
Resilience-driven cooperative reconfiguration strategy for unmanned weapon system-of-systems
4
作者 SUN Qin LI Hongxu +1 位作者 ZENG Yifan ZHANG Yingchao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期932-944,共13页
As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilienc... As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS. 展开更多
关键词 resilience strategy unmanned weapon system-of-systems(UWSoS) cooperative reconfiguration unmanned con-frontation
下载PDF
Unmanned Ship Identification Based on Improved YOLOv8s Algorithm
5
作者 Chun-Ming Wu Jin Lei +2 位作者 Wu-Kai Liu Mei-Ling Ren Ling-Li Ran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3071-3088,共18页
Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes ... Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%. 展开更多
关键词 unmanned ships R_YOLO EMA CSPStage YOLOv8s
下载PDF
Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding
6
作者 HONG Weiyuan LI Ziqiu +5 位作者 FENG Xiangqian QIN Jinhua WANG Aidong JIN Shichao WANG Danying CHEN Song 《Rice science》 SCIE CSCD 2024年第5期617-628,I0066-I0070,共17页
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat... Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work. 展开更多
关键词 phenological date plant height unmanned aerial vehicle machine learning rice breeding
下载PDF
Optimization of Center of Gravity Position and Anti-Wave Plate Angle of Amphibious Unmanned Vehicle Based on Orthogonal Experimental Method
7
作者 Deyong Shang Xi Zhang +3 位作者 Fengqi Liang Chunde Zhai Hang Yang Yanqi Niu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2027-2041,共15页
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig... When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%. 展开更多
关键词 Amphibious unmanned vehicle orthogonal experimental design anti-wave plate center of gravity resistance characteristic
下载PDF
Adaptive Sensor-Fault Tolerant Control of Unmanned Underwater Vehicles With Input Saturation
8
作者 Xuerao Wang Qingling Wang +2 位作者 Yanxu Su Yuncheng Ouyang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期907-918,共12页
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault... This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Asymptotic stability fault-tolerant control input saturation robust integral of the sign of error unmanned underwater vehicle
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
9
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
LSDA-APF:A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment
10
作者 Xiaoli Li Tongtong Jiao +2 位作者 Jinfeng Ma Dongxing Duan Shengbin Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期595-617,共23页
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ... In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account. 展开更多
关键词 unmanned surface vehicles local obstacle avoidance algorithm artificial potential field algorithm path planning collision detection
下载PDF
Unmanned Aerial Vehicle Inspection Routing and Scheduling for Engineering Management
11
作者 Lu Zhen Zhiyuan Yang +2 位作者 Gilbert Laporte Wen Yi Tianyi Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期223-239,共17页
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ... Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency. 展开更多
关键词 Engineering management unmanned aerial vehicle Inspection routing and scheduling OPTIMIZATION Mixed-integer linear programming model Variable neighborhood search metaheuristic
下载PDF
Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks
12
作者 Ping Li Kefeng Guo +2 位作者 Feng Zhou XuelingWang Yuzhen Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1849-1864,共16页
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e... Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings. 展开更多
关键词 Integrated satellite unmanned aerial vehicle relay networks reconfigurable intelligent surface average secrecy capacity(ASC) asymptotic ASC
下载PDF
Ground target localization of unmanned aerial vehicle based on scene matching
13
作者 ZHANG Yan CHEN Yukun +2 位作者 HUANG He TANG Simi LI Zhi 《High Technology Letters》 EI CAS 2024年第3期231-243,共13页
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ... In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment. 展开更多
关键词 scene matching basemap adjustment feature registration random sample con-sensus(RANSAC) unmanned aerial vehicle(UAV)
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
14
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 unmanned aerial vehicle(UAV) Uniform linear array(ULA) Direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
Structural Design Study of Air-Dropped Unmanned Maritime Mobile Search and Rescue Platforms
15
作者 Zhiming Feng Lingzhe Kong Zhongyu Cui 《Journal of Electronic Research and Application》 2024年第3期234-242,共9页
In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that... In order to improve the efficiency and safety of search and rescue(SAR)at sea,this paper proposes a kind of emergency rapid rescue unmanned craft(air-dropped unmanned maritime motorized search and rescue platform)that can be delivered by a large transport aircraft.This paper studies the structural design scheme of the platform,and the main scale of the platform,the choice of power system and the impact resistance performance are considered in the design process to ensure its rapid response and effective rescue capability under complex sea conditions.Simulation results show that the platform can withstand the impact of air injection into the water and the shipboard equipment can operate normally under the impact load,thus verifying the feasibility and safety of the design.This study serves to improve the maritime search and rescue system and enhance the oceanic emergency response capability. 展开更多
关键词 Maritime search and rescue unmanned maritime platform Maritime airdrop Impact resistance simulation
下载PDF
INTEGRATED DESIGN OF AN ELECTRIC POWERED UNMANNED AIR VEHICLE USING CONCURRENT SUBSPACE DESIGN 被引量:1
16
作者 余雄庆 MarcA.Stelmack StephenM.Batill 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期140-149,共10页
The concurrent subspace design (CSD) framework has been used to conduct a preliminary design optimization of an electric powered, unmanned air vehicle (EPUAV) operating at a low Reynolds number. A multidisciplinary sy... The concurrent subspace design (CSD) framework has been used to conduct a preliminary design optimization of an electric powered, unmanned air vehicle (EPUAV) operating at a low Reynolds number. A multidisciplinary system analysis that includes aerodynamics, weights, propulsion, performance and stability and control has been developed for this class of vehicles. The CSD framework employs artificial neural network based response surfaces to provide approximations to the design space. The EPUAV system includes 25 continuous and 4 discrete design variables. The CSD framework was able to identify feasible designs with significant weight reductions relative to any previously considered (i.e. initial database) designs. This was accomplished with a limited number of system analyses. The results also demonstrate the nature of this design framework adaptive to changes in design requirements. 展开更多
关键词 aircraft design multidisciplinary design optimization unmanned air vehicle OPTIMIZATION
下载PDF
ADAPTIVE NEURAL NETWORK ATTITUDE CONTROL FOR UNMANNED HELICOPTER
17
作者 王辉 徐锦法 高正 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期168-173,共6页
Adaptive flight control technology, feedback linearization, model inversion theory are reviewed and the error dynamic characteristics are analyzed, and an adaptive on-line neural network attitude control system is pre... Adaptive flight control technology, feedback linearization, model inversion theory are reviewed and the error dynamic characteristics are analyzed, and an adaptive on-line neural network attitude control system is presented. The model inversion is under the hover condition. And the adaptive control law based on the neural network is designed to guarantee the boundedness of tracking error and control signals. Simulation results demonstrate that the nonlinear neural network augmented model inversion can self-adapt to the uncertainty and modeling errors of unmanned helicopters. Results are compared while the parameters of PD controller and robustness items are changed. 展开更多
关键词 neural network adaptive control unmanned helicopter flight control
下载PDF
Effects of Supplementary Pollination by Single-rotor Agricultural Unmanned Aerial Vehicle in Hybrid Rice Seed Production 被引量:8
18
作者 刘爱民 张海清 +7 位作者 廖翠猛 张青 肖层林 何菊英 张健勇 何研 李继宇 罗锡文 《Agricultural Science & Technology》 CAS 2017年第3期543-547,552,共6页
In 2012-2015, under the conditions of different natural wind speeds, the single-rotor agricultural unmanned aerial vehicle was used for the supplementary pollination during seed production of 10 hybrid combinations wi... In 2012-2015, under the conditions of different natural wind speeds, the single-rotor agricultural unmanned aerial vehicle was used for the supplementary pollination during seed production of 10 hybrid combinations with big parental row ratios in the hybrid rice seed production bases of Hunan, Hainan and Guangdong Province, and the pollination effects were studied through the investigation of pollen density in the field, outcrossing seeding rate of female parent and seed production yield. The results showed that under the parental row ratio of 6:(40-60), the seed setting rate and yields of the supplementary pollination by single-rotor agricultural UAV could reach and even higher than those of artificial pollination, indicating the single-rotor agricultural UAV could be used in supplementary pollination for hybdd rice seed production, which could promote the whole-process mechanization of seed production. 展开更多
关键词 Hybrid rice Seed production Single-rotor agricultural unmanned aerialvehicle Supplementary pollination
下载PDF
Development and Missions of Unmanned Surface Vehicle 被引量:73
19
作者 严汝建 庞硕 +1 位作者 孙寒冰 庞永杰 《Journal of Marine Science and Application》 2010年第4期451-457,共7页
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope... The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service. 展开更多
关键词 unmanned surface vehicle littoral combat ship surveillance and reconnaissance unmanned combat system mine countermeasures
下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:24
20
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部