Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optim...A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optimization problem corresponding to the uplink capacity of the single-user SA-MIMO system is deduced. Then the closedform expression of the capacity is obtained in the case of equal power allocation and the same direction-of-arrivals (DOAs) from different transmit antennas at the same antenna array, and an upper bound of the capacity is also given in the case of different DOAs at the same antenna array. After that, for the general case, a suboptimal method for the capacity optimization problem is presented. Some numerical results are also given to compare the capacities of conventional MIMO and SA-MIMO systems and show that the proposed method is viable.展开更多
This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to max...This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.展开更多
A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint a...A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint and transmits data when it has sufficient transmit power to perform channel inversion. With biased user association, each user is associated with a base station(BS) that provides the maximum received power weighted by a bias factor, but not their nearest BS. Stochastic geometry is used to evaluate the performances of the proposed system model in terms of the outage probability and ergodic rate for each tier as functions of the biased and power control parameters. Simulations validate our analytical derivations. Numerical results show that there exists a trade-off introduced by the power cut-off threshold and the maximum user transmit power constraint. When the maximum user transmit power becomes a binding constraint, the overall performance is independent of BS densities. In addition, we have shown that it is beneficial for the outage and rate performances by optimizing different network parameters such as the power cut-off threshold as well as the biased factors.展开更多
Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-or...Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.展开更多
We consider a cellular network with a full-duplex base station, multiple uplink users and an eavesdropper. The full-duplex base station transmits jamming signals to degrade the eavesdropper channel when receiving secu...We consider a cellular network with a full-duplex base station, multiple uplink users and an eavesdropper. The full-duplex base station transmits jamming signals to degrade the eavesdropper channel when receiving secure multi-user signals. To maximize the secrecy rate of uplink communications, we propose a distributed ascending-clock auction(ACA) algorithm to allocate subcarriers and jamming power. Specifically, the impact of the self-interference of the full-duplex base station on the secrecy rate is considered. The proposed algorithm consists of two parts. Firstly, subcarriers and the jamming power are respectively priced by the base station. Secondly, users select the subcarrier and the jamming power based on the price. Moreover, the convergence of the proposed auction algorithm is mathematically proved. Simulation results show that the proposed auction algorithm is more beneficial to improve the uplink secrecy performance compared to traditional auction algorithms.展开更多
In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA)...In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.展开更多
With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise en...With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.展开更多
We solve the problem of uplink video streaming in CDMA cellular networks by jointly designing the rate control and scheduling algorithms. In the pricing-based distributed rate control algorithm, the base station annou...We solve the problem of uplink video streaming in CDMA cellular networks by jointly designing the rate control and scheduling algorithms. In the pricing-based distributed rate control algorithm, the base station announces a price for the per unit average rate it can support, and the mobile devices choose their desired average transmission rates by balancing their video quality and cost of transmission. Each mobile device then determines the specific video frames to transmit by a video summarization process. In the time-division-multiplexing (TDM) scheduling algorithm, the base station collects the information on frames to be transmitted from all devices within the current time window, sorts them in increasing order of deadlines, and schedules the transmissions in a TDM fashion. This joint algorithm takes advantage of the multi-user content diversity, and maximizes the network total utility (i.e., minimize the network total distortion), while satisfying the delivery deadline constraints. Simulations showed that the proposed algorithm significantly outperforms the constant rate provision algorithm.展开更多
Utilizing the unlicensed spectrum as supplementary is being studied to meet the increasingly growing demand of user equipment for rate,traffic and bandwidth,and thus to mitigate the current spectrum scarcity crisis.In...Utilizing the unlicensed spectrum as supplementary is being studied to meet the increasingly growing demand of user equipment for rate,traffic and bandwidth,and thus to mitigate the current spectrum scarcity crisis.In this paper,we investigate the uplink multi-user multiple-input multiple-output(UL MU-MIMO) technique to achieve multiplexing gain in unlicensed spectrum.We first define a new parameter called channel busy radio(CBR) which is related to the probability of occupying the unlicensed channel,and find that the failure to occupy the unlicensed channel leads to the performance degradation in unlicensed spectrum.Then,according to the user-specific CBR of the unlicensed channel,we propose a flexible scheduling scheme for UL MU-MIMO in unlicensed spectrum,and formulate an optimization problem for the optimal scheduled user number.Furthermore,an adaptive scheduling algorithm is proposed to decide the optimal number of the scheduled users efficiently.The simulation results show that,based on statistical channel condition in unlicensed spectrum,adjusting the number of the scheduled user flexibly can offset the degraded throughput and form an optimal MU-MIMO transmission.展开更多
By means of numerical simulations, we analyze the scintillation characterization for multiple incoherent uplink Gaussian beams under weak fluctuations cases. Because truly independent beams are difficult to create, we...By means of numerical simulations, we analyze the scintillation characterization for multiple incoherent uplink Gaussian beams under weak fluctuations cases. Because truly independent beams are difficult to create, we present a more general but approximate model for the multiple of beams traveling through partially correlated paths. This model compares with wave-optics simulations and highlights the reduced correlation coefficient as the beam separation is increased. The scintillation index of three and six incoherent uplink Gaussian beams is also induced. The result shows that the scintillation index decreases with the increase of beams amount and beam separation. When the beams amount and strength of atmospheric turbulence are fixed, the reduction of scintillation index is affected by the ratio of beams separation and the Fried length. The corresponding ohvsical mechanisms for the results are discussed.展开更多
Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the sig...Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.展开更多
The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing i...The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing in a DSC system for uplink of the DSC system. To further improve the uplink performance, the high-rank codebook is designed based on singular value decomposition (SVD) due to the unnecessary preservation of strict constant modulus in the DSC system. And according to the simulation result, the proposed codebook leads to significant sum-rate gain and appreciable block error rate (BLER) performance improvement in the DSC system.展开更多
When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportu...When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.展开更多
In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation t...In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation to compare different uplink power control algorithms, including the FPC adopted in 3GPP LTE and LTE-Advanced. Simulations show that SMST adopted in IEEE 802.16m outperforms other algorithms in terms of spectral efficiency, cell-edge performance, interference control, and trade-off control between sector-accumulated throughput and cell-edge user throughput. The SMST performance gain over FPC can be more than 40%展开更多
In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple ...In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.展开更多
In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shar...In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
基金The National Science and Technology Major Projects(No.2010ZX03003-002,2010ZX03003-004)the National Natural Science Foundation of China(No.60972023)+1 种基金Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2011A06)the Fund of UK-China Science Bridge
文摘A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optimization problem corresponding to the uplink capacity of the single-user SA-MIMO system is deduced. Then the closedform expression of the capacity is obtained in the case of equal power allocation and the same direction-of-arrivals (DOAs) from different transmit antennas at the same antenna array, and an upper bound of the capacity is also given in the case of different DOAs at the same antenna array. After that, for the general case, a suboptimal method for the capacity optimization problem is presented. Some numerical results are also given to compare the capacities of conventional MIMO and SA-MIMO systems and show that the proposed method is viable.
文摘This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.
基金supported by the National Natural Science Foundation of China (61401225, 61571234)the National Science Foundation of Jiangsu Province (BK20140894, BK20140883, BK20160899)+4 种基金the Six Talented Eminence Foundation of Jiangsu Province (XYDXXJS-044)the National Science Foundation of the Higher Education Institutions of Jiangsu Province (14KJD510007, 16KJB510035)the Jiangsu Planned Projects for Postdoctoral Research Funds (1501125B)China Postdoctoral Science Foundation funded project (2015M581844)the Introduction of Talent Scientific Research Fund of Nanjing University of Posts Telecommunications project (NY213104, NY214190)
文摘A K-tier uplink heterogeneous cellular network is modelled and analysed by accounting for both truncated channel inversion power control and biased user association. Each user has a maximum transmit power constraint and transmits data when it has sufficient transmit power to perform channel inversion. With biased user association, each user is associated with a base station(BS) that provides the maximum received power weighted by a bias factor, but not their nearest BS. Stochastic geometry is used to evaluate the performances of the proposed system model in terms of the outage probability and ergodic rate for each tier as functions of the biased and power control parameters. Simulations validate our analytical derivations. Numerical results show that there exists a trade-off introduced by the power cut-off threshold and the maximum user transmit power constraint. When the maximum user transmit power becomes a binding constraint, the overall performance is independent of BS densities. In addition, we have shown that it is beneficial for the outage and rate performances by optimizing different network parameters such as the power cut-off threshold as well as the biased factors.
基金supported by National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.
基金supported in part by National High Technology Research and Development Program of China(863 Program)under Grant No.SS2015AA011306National High Technology Research and Development Program of China(863 Program)under Grant No.2014AA01A701National Natural Science Foundation of China under Grants No.61379006 and 61521003
文摘We consider a cellular network with a full-duplex base station, multiple uplink users and an eavesdropper. The full-duplex base station transmits jamming signals to degrade the eavesdropper channel when receiving secure multi-user signals. To maximize the secrecy rate of uplink communications, we propose a distributed ascending-clock auction(ACA) algorithm to allocate subcarriers and jamming power. Specifically, the impact of the self-interference of the full-duplex base station on the secrecy rate is considered. The proposed algorithm consists of two parts. Firstly, subcarriers and the jamming power are respectively priced by the base station. Secondly, users select the subcarrier and the jamming power based on the price. Moreover, the convergence of the proposed auction algorithm is mathematically proved. Simulation results show that the proposed auction algorithm is more beneficial to improve the uplink secrecy performance compared to traditional auction algorithms.
基金supported in part by Thailand Science Research and Innovation(TSRI)and National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)Thailand+1 种基金by Khon Kaen University,ThailandDuy Tan University,Vietnam。
文摘In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.
文摘With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.
基金Project (Nos. CNS-0427677 and CCF-0448012) supported by theNational Science Foundation of USA
文摘We solve the problem of uplink video streaming in CDMA cellular networks by jointly designing the rate control and scheduling algorithms. In the pricing-based distributed rate control algorithm, the base station announces a price for the per unit average rate it can support, and the mobile devices choose their desired average transmission rates by balancing their video quality and cost of transmission. Each mobile device then determines the specific video frames to transmit by a video summarization process. In the time-division-multiplexing (TDM) scheduling algorithm, the base station collects the information on frames to be transmitted from all devices within the current time window, sorts them in increasing order of deadlines, and schedules the transmissions in a TDM fashion. This joint algorithm takes advantage of the multi-user content diversity, and maximizes the network total utility (i.e., minimize the network total distortion), while satisfying the delivery deadline constraints. Simulations showed that the proposed algorithm significantly outperforms the constant rate provision algorithm.
基金partly supported by the NSFC International Cooperation and Exchange Program(Grant No.61461136001)partly supported by the Shanghai Rising-Star Program(grant no.17QA1403800)+2 种基金the NSFC International Cooperation and Exchange Program(Grant No.61461136004)partly supported by the ESEC project of Tekes and the National Natural Science Foundation of China(Grant No.61401440)partly supported by the NSFC International Cooperation and Exchange Program(Grant No.61461136003)
文摘Utilizing the unlicensed spectrum as supplementary is being studied to meet the increasingly growing demand of user equipment for rate,traffic and bandwidth,and thus to mitigate the current spectrum scarcity crisis.In this paper,we investigate the uplink multi-user multiple-input multiple-output(UL MU-MIMO) technique to achieve multiplexing gain in unlicensed spectrum.We first define a new parameter called channel busy radio(CBR) which is related to the probability of occupying the unlicensed channel,and find that the failure to occupy the unlicensed channel leads to the performance degradation in unlicensed spectrum.Then,according to the user-specific CBR of the unlicensed channel,we propose a flexible scheduling scheme for UL MU-MIMO in unlicensed spectrum,and formulate an optimization problem for the optimal scheduled user number.Furthermore,an adaptive scheduling algorithm is proposed to decide the optimal number of the scheduled users efficiently.The simulation results show that,based on statistical channel condition in unlicensed spectrum,adjusting the number of the scheduled user flexibly can offset the degraded throughput and form an optimal MU-MIMO transmission.
基金supported by the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(Grant No.2012JJ05)
文摘By means of numerical simulations, we analyze the scintillation characterization for multiple incoherent uplink Gaussian beams under weak fluctuations cases. Because truly independent beams are difficult to create, we present a more general but approximate model for the multiple of beams traveling through partially correlated paths. This model compares with wave-optics simulations and highlights the reduced correlation coefficient as the beam separation is increased. The scintillation index of three and six incoherent uplink Gaussian beams is also induced. The result shows that the scintillation index decreases with the increase of beams amount and beam separation. When the beams amount and strength of atmospheric turbulence are fixed, the reduction of scintillation index is affected by the ratio of beams separation and the Fried length. The corresponding ohvsical mechanisms for the results are discussed.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.
基金supported by the National High-tech Research and Development Program of China(863 Program)(2012AA111902)the Shanghai Natural Science Foundation(12ZR1433900)
文摘The shrinking of cell-size brings significant changes to the wireless uplink of densely small cells (DSCs). A codebook design is proposed that utilizes the strong line of sight (LOS) chan- nel component existing in a DSC system for uplink of the DSC system. To further improve the uplink performance, the high-rank codebook is designed based on singular value decomposition (SVD) due to the unnecessary preservation of strict constant modulus in the DSC system. And according to the simulation result, the proposed codebook leads to significant sum-rate gain and appreciable block error rate (BLER) performance improvement in the DSC system.
基金supported by the National Natural Science Foundation of China under Grants No. 60832008,No. 60902001
文摘When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.
文摘In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation to compare different uplink power control algorithms, including the FPC adopted in 3GPP LTE and LTE-Advanced. Simulations show that SMST adopted in IEEE 802.16m outperforms other algorithms in terms of spectral efficiency, cell-edge performance, interference control, and trade-off control between sector-accumulated throughput and cell-edge user throughput. The SMST performance gain over FPC can be more than 40%
文摘In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.
基金Funded by the Fundamental Research Funds for the Central Universities (XDJXS11161157)
文摘In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.
文摘针对非正交多址接入(non-orthogonal multiple access,NOMA)系统在无线环境下传输速率较低的问题,利用智能反射面(intelligent reflecting surface,IRS)可以改变入射信号相移的特性,提出一种基于IRS辅助上行NOMA和速率最大化算法.首先,在满足每个用户功率、每个用户最小速率、IRS相位偏移的约束条件下,构建一个联合用户功率、IRS相移多变量优化模型;然后,通过问题公式的等效简化将原非凸问题转换为2个容易处理的子问题;最后,通过交替方向乘子法(alternating direction method of multipliers,ADMM)、引入松弛变量等方法对子问题进行求解.仿真结果表明,相较于逐次凸逼近法(successiveconvexapproximation,SCA)所提出的算法平均提升了系统0.4 bit/(s·Hz)的和速率,证明了基于ADMM的算法有效提高系统的和速率.