Augmentation of abnormal cells in the brain causes brain tumor(BT),and early screening and treatmentwill reduce its harshness in patients.BT’s clinical level screening is usually performed with Magnetic Resonance Ima...Augmentation of abnormal cells in the brain causes brain tumor(BT),and early screening and treatmentwill reduce its harshness in patients.BT’s clinical level screening is usually performed with Magnetic Resonance Imaging(MRI)due to its multi-modality nature.The overall aims of the study is to introduce,test and verify an advanced image processing technique with algorithms to automatically extract tumour sections from brain MRI scans,facilitating improved accuracy.The research intends to devise a reliable framework for detecting the BT region in the twodimensional(2D)MRI slice,and identifying its class with improved accuracy.The methodology for the devised framework comprises the phases of:(i)Collection and resizing of images,(ii)Implementation and Segmentation of Convolutional Neural Network(CNN),(iii)Deep feature extraction,(iv)Handcrafted feature extraction,(v)Moth-Flame-Algorithm(MFA)supported feature reduction,and(vi)Performance evaluation.This study utilized clinical-grade brain MRI of BRATS and TCIA datasets for the investigation.This framework segments detected the glioma(low/high grade)and glioblastoma class BT.This work helped to get a segmentation accuracy of over 98%with VGG-UNet and a classification accuracy of over 98%with the VGG16 scheme.This study has confirmed that the implemented framework is very efficient in detecting the BT in MRI slices with/without the skull section.展开更多
文摘Augmentation of abnormal cells in the brain causes brain tumor(BT),and early screening and treatmentwill reduce its harshness in patients.BT’s clinical level screening is usually performed with Magnetic Resonance Imaging(MRI)due to its multi-modality nature.The overall aims of the study is to introduce,test and verify an advanced image processing technique with algorithms to automatically extract tumour sections from brain MRI scans,facilitating improved accuracy.The research intends to devise a reliable framework for detecting the BT region in the twodimensional(2D)MRI slice,and identifying its class with improved accuracy.The methodology for the devised framework comprises the phases of:(i)Collection and resizing of images,(ii)Implementation and Segmentation of Convolutional Neural Network(CNN),(iii)Deep feature extraction,(iv)Handcrafted feature extraction,(v)Moth-Flame-Algorithm(MFA)supported feature reduction,and(vi)Performance evaluation.This study utilized clinical-grade brain MRI of BRATS and TCIA datasets for the investigation.This framework segments detected the glioma(low/high grade)and glioblastoma class BT.This work helped to get a segmentation accuracy of over 98%with VGG-UNet and a classification accuracy of over 98%with the VGG16 scheme.This study has confirmed that the implemented framework is very efficient in detecting the BT in MRI slices with/without the skull section.