风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscilla...The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.展开更多
大规模风电经柔性直流输电(Voltage Source Converter Based High Voltage Direct Current,VSC-HVDC)并网替代了电网内大量的同步发电机,削弱了电网的调频能力。对此,文中提出了利用直流电容和风电机组功率备用提高电网频率响应能力的...大规模风电经柔性直流输电(Voltage Source Converter Based High Voltage Direct Current,VSC-HVDC)并网替代了电网内大量的同步发电机,削弱了电网的调频能力。对此,文中提出了利用直流电容和风电机组功率备用提高电网频率响应能力的协同控制策略。通过系统频率响应模型分析电网频率响应特性与影响频率的关键因素;建立了直流电压与电网频率的关系式,控制直流电容吸收或释放能量实现VSC-HVDC惯量支撑;基于超速减载控制方案,将电网频率的偏差与微分引入风电机组的功率控制系统,实现风电机组综合频率控制。最后,在大规模风电经VSC-HVDC接入的电网中验证所提控制策略的有效性。结果表明:所提控制策略能够显著提升电网的惯量水平与一次调频响应能力。展开更多
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
基金supported by Research on the Oscillation Mechanism and Suppression Strategy of Yu-E MMC-HVDC Equipment and System(2021Yudian Technology 33#).
文摘The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.
文摘大规模风电经柔性直流输电(Voltage Source Converter Based High Voltage Direct Current,VSC-HVDC)并网替代了电网内大量的同步发电机,削弱了电网的调频能力。对此,文中提出了利用直流电容和风电机组功率备用提高电网频率响应能力的协同控制策略。通过系统频率响应模型分析电网频率响应特性与影响频率的关键因素;建立了直流电压与电网频率的关系式,控制直流电容吸收或释放能量实现VSC-HVDC惯量支撑;基于超速减载控制方案,将电网频率的偏差与微分引入风电机组的功率控制系统,实现风电机组综合频率控制。最后,在大规模风电经VSC-HVDC接入的电网中验证所提控制策略的有效性。结果表明:所提控制策略能够显著提升电网的惯量水平与一次调频响应能力。