A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of th...A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.展开更多
This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously ...This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.展开更多
A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to ana...A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to analyze the resonant cavity com- posed of anode foil and feedback annulus, and a theoretical expression for the fundamental mode frequency of the resonant cavity is given. The VCO is investigated in detail with a particle-in-cell method. We obtain the microwave frequencies from simulation, theoretical expression, and relative references, and draw three important conclusions. First, the microwave fre- quency is a constant when the diode voltage is changed from 588 kV to 717 kV. Second, the fluctuation of the microwave frequency is very small when the AK gap is changed from 1.2 cm to 1.6 cm. Third, the microwave frequency agrees with the theoretical result. The relative error, which is calculated according to the theoretical and simulation frequencies, is only 1.7%.展开更多
为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer...为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61773006.
文摘A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.
文摘This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.
基金supported by the National Natural Science Foundation of China(Grant No.11075210)the Postdoctoral Science Foundation of China(GrantNo.201104761)
文摘A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to analyze the resonant cavity com- posed of anode foil and feedback annulus, and a theoretical expression for the fundamental mode frequency of the resonant cavity is given. The VCO is investigated in detail with a particle-in-cell method. We obtain the microwave frequencies from simulation, theoretical expression, and relative references, and draw three important conclusions. First, the microwave fre- quency is a constant when the diode voltage is changed from 588 kV to 717 kV. Second, the fluctuation of the microwave frequency is very small when the AK gap is changed from 1.2 cm to 1.6 cm. Third, the microwave frequency agrees with the theoretical result. The relative error, which is calculated according to the theoretical and simulation frequencies, is only 1.7%.
文摘为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。